Peeter Joot's (OLD) Blog.

Math, physics, perl, and programming obscurity.

Posts Tagged ‘time dependent pertubation’

Second form of adiabatic approximation.

Posted by peeterjoot on December 11, 2011

[Click here for a PDF of this post with nicer formatting and figures if the post had any (especially if my latex to wordpress script has left FORMULA DOES NOT PARSE errors.)]

Motivation.

In class we were shown an adiabatic approximation where we started with (or worked our way towards) a representation of the form

\begin{aligned}{\left\lvert {\psi} \right\rangle} = \sum_k c_k(t) e^{-i \int_0^t (\omega_k(t') - \Gamma_k(t')) dt' } {\left\lvert {\psi_k(t)} \right\rangle}\end{aligned} \hspace{\stretch{1}}(1.1)

where {\left\lvert {\psi_k(t)} \right\rangle} were normalized energy eigenkets for the (slowly) evolving Hamiltonian

\begin{aligned}H(t) {\left\lvert {\psi_k(t)} \right\rangle} = E_k(t) {\left\lvert {\psi_k(t)} \right\rangle}\end{aligned} \hspace{\stretch{1}}(1.2)

In the problem sets we were shown a different adiabatic approximation, where are starting point is

\begin{aligned}{\left\lvert {\psi(t)} \right\rangle} = \sum_k c_k(t) {\left\lvert {\psi_k(t)} \right\rangle}.\end{aligned} \hspace{\stretch{1}}(1.3)

For completeness, here’s a walk through of the general amplitude derivation that’s been used.

Guts

We operate with our energy identity once again

\begin{aligned}0 &=\left(H - i \hbar \frac{d{{}}}{dt} \right) \sum_k c_k {\left\lvert {k} \right\rangle} \\ &=\sum_k c_k E_k {\left\lvert {k} \right\rangle} - i \hbar c_k' {\left\lvert {k} \right\rangle} - i \hbar c_k {\left\lvert {k'} \right\rangle} ,\end{aligned}

where

\begin{aligned}{\left\lvert {k'} \right\rangle} = \frac{d{{}}}{dt} {\left\lvert {k} \right\rangle}.\end{aligned} \hspace{\stretch{1}}(2.4)

Bra’ing with {\left\langle {m} \right\rvert}, and split the sum into k = m and k \ne m parts

\begin{aligned}0 =c_m E_m - i \hbar c_m' - i \hbar c_m \left\langle{{m}} \vert {{m'}}\right\rangle - i \hbar \sum_{k \ne m} c_k \left\langle{{m}} \vert {{k'}}\right\rangle \end{aligned} \hspace{\stretch{1}}(2.5)

Again writing

\begin{aligned}\Gamma_m = i \left\langle{{m}} \vert {{m'}}\right\rangle \end{aligned} \hspace{\stretch{1}}(2.6)

We have

\begin{aligned}c_m' = \frac{1}{{i \hbar}} c_m (E_m - \hbar \Gamma_m) - \sum_{k \ne m} c_k \left\langle{{m}} \vert {{k'}}\right\rangle,\end{aligned} \hspace{\stretch{1}}(2.7)

In this form we can make an “Adiabatic” approximation, dropping the k \ne m terms, and integrate

\begin{aligned}\int \frac{d c_m'}{c_m} = \frac{1}{{i \hbar}} \int_0^t (E_m(t') - \hbar \Gamma_m(t')) dt' \end{aligned} \hspace{\stretch{1}}(2.8)

or

\begin{aligned}c_m(t) = A \exp\left(\frac{1}{{i \hbar}} \int_0^t (E_m(t') - \hbar \Gamma_m(t')) dt' \right).\end{aligned} \hspace{\stretch{1}}(2.9)

Evaluating at t = 0, fixes the integration constant for

\begin{aligned}c_m(t) = c_m(0) \exp\left(\frac{1}{{i \hbar}} \int_0^t (E_m(t') - \hbar \Gamma_m(t')) dt' \right).\end{aligned} \hspace{\stretch{1}}(2.10)

Observe that this is very close to the starting point of the adiabatic approximation we performed in class since we end up with

\begin{aligned}{\left\lvert {\psi} \right\rangle} = \sum_k c_k(0) e^{-i \int_0^t (\omega_k(t') - \Gamma_k(t')) dt' } {\left\lvert {k(t)} \right\rangle},\end{aligned} \hspace{\stretch{1}}(2.11)

So, to perform the more detailed approximation, that started with 1.1, where we ended up with all the cross terms that had both \omega_k and Berry phase \Gamma_k dependence, we have only to generalize by replacing c_k(0) with c_k(t).

Posted in Math and Physics Learning. | Tagged: , , | Leave a Comment »

A short derivation of the time dependent pertubation result.

Posted by peeterjoot on December 9, 2011

[Click here for a PDF of this post with nicer formatting and figures if the post had any (especially if my latex to wordpress script has left FORMULA DOES NOT PARSE errors.)]

Guts

A super short derivation of the time dependent pertubation result. With

\begin{aligned}{\left\lvert {\psi{t}} \right\rangle} = \sum_k c_k(t) e^{-i\omega_k t} {\left\lvert {k} \right\rangle}\end{aligned} \hspace{\stretch{1}}(1.1)

\begin{aligned}0&=\left( H_0 + H' - i\hbar \frac{d}{dt} \right){\left\lvert {\psi{t}} \right\rangle} \\ &=\left( H_0 + H' - i\hbar \frac{d}{dt} \right)\sum_k c_k e^{-i\omega_k t} {\left\lvert {k} \right\rangle} \\ &=\sum_k e^{-i\omega_k t} \left(\not{{c_k E_k}} + H' c_k - \not{{i\hbar (-i \omega_k) c_k}} -i\hbar c_k'\right){\left\lvert {k} \right\rangle}\end{aligned}

Bra with {\left\langle {m} \right\rvert}

\begin{aligned}\sum_k e^{-i\omega_k t} H'_{mk} c_k =i\hbar e^{-i\omega_m t} c_m',\end{aligned} \hspace{\stretch{1}}(1.2)

or

\begin{aligned}c_m'=\frac{1}{{i\hbar}}\sum_k e^{-i\omega_{km} t} H'_{mk} c_k \end{aligned} \hspace{\stretch{1}}(1.3)

Now we can make the assumptions about the initial state and away we go.

Posted in Math and Physics Learning. | Tagged: , | Leave a Comment »

Review of Quantum mechanics approximation results.

Posted by peeterjoot on November 10, 2011

[Click here for a PDF of this post with nicer formatting and figures if the post had any (especially if my latex to wordpress script has left FORMULA DOES NOT PARSE errors.)]

Motivation.

Here I’ll summarize what I’d put on a cheat sheet for the tests or exam, if one would be allowed. While I can derive these results, memorization unfortunately appears required for good test performance in this class, and this will give me a good reference of what to memorize.

This set of review notes covers all the approximation methods we covered except for Fermi’s golden rule.

Variational method

We can find an estimate of our ground state energy using

\begin{aligned}\boxed{\frac{{\left\langle {\Psi} \right\rvert} H {\left\lvert {\Psi} \right\rangle}}{\left\langle{{\Psi}} \vert {{\Psi}}\right\rangle}\ge E_0}\end{aligned} \hspace{\stretch{1}}(2.1)

Time independent perturbation

Given a perturbed Hamiltonian and an associated solution for the unperturbed state

\begin{aligned}\boxed{\begin{aligned}H &= H_0 + \lambda H', \qquad \lambda \in [0,1] \\ H_0 {\left\lvert {{\psi_{m\alpha}}^{(0)}} \right\rangle} &= {E_m}^{(0)} {\left\lvert {{\psi_{m\alpha}}^{(0)}} \right\rangle},\end{aligned}}\end{aligned} \hspace{\stretch{1}}(3.2)

we assume a power series solution for the energy

\begin{aligned}E_m = {E_m}^{(0)} + \lambda {E_m}^{(1)} + \lambda^2 {E_m}^{(2)} + \cdots\end{aligned} \hspace{\stretch{1}}(3.3)

For a non-degenerate state {\left\lvert {\psi_m} \right\rangle} = {\left\lvert {\psi_{m1}} \right\rangle}, with an unperturbed value of {\left\lvert {\psi_{m}^{(0)}} \right\rangle} = {\left\lvert {\psi_{m1}^{(0)}} \right\rangle}, we seek a power series expansion of this ket in the perturbed system

\begin{aligned}\begin{aligned}{\left\lvert {\psi_m} \right\rangle} &= \sum_{n,\alpha} {c_{n\alpha;m}}^{(0)} {\left\lvert {{\psi_{n\alpha}}^{(0)}} \right\rangle} +\lambda\sum_{n,\alpha} {c_{n\alpha;m}}^{(1)} {\left\lvert {{\psi_{n\alpha}}^{(0)}} \right\rangle} + \lambda^2\sum_{n,\alpha} {c_{n\alpha;m}}^{(2)} {\left\lvert {{\psi_{n\alpha}}^{(0)}} \right\rangle} + \cdots \\ &\propto{\left\lvert {{\psi_m}^{(0)}} \right\rangle} + \lambda\sum_{n \ne m, \alpha} {\bar{c}_{n\alpha;m}}^{(1)} {\left\lvert {{\psi_{n\alpha}}^{(0)}} \right\rangle} +\lambda^2\sum_{n \ne m, \alpha} {\bar{c}_{n\alpha;m}}^{(2)} {\left\lvert {{\psi_{n\alpha}}^{(0)}} \right\rangle} + \cdots\end{aligned}\end{aligned} \hspace{\stretch{1}}(3.4)

Any states n \ne m are allowed to have degeneracy. For this case, we found to second order in energy and first order in the kets

\begin{aligned}\boxed{\begin{aligned}E_m &= E_m^{(0)} + \lambda {H_{m1;m1}}' + \lambda^2 \sum_{n \ne m, \alpha} \frac{{\left\lvert{{H_{n\alpha;m1}}'}\right\rvert}^2 }{ E_m^{(0)} - E_n^{(0)} } + \cdots\\ {\left\lvert {\psi_m} \right\rangle} &\propto {\left\lvert {{\psi_m}^{(0)}} \right\rangle} + \lambda\sum_{n \ne m, \alpha} \frac{{H_{n\alpha;m1}}'}{ E_m^{(0)} - E_n^{(0)} } {\left\lvert {{\psi_{n\alpha}}^{(0)}} \right\rangle}+ \cdots \\ H_{n\alpha;s\beta}' &={\left\langle {{\psi_{n\alpha}}^{(0)}} \right\rvert}H'{\left\lvert {{\psi_{s\beta}}^{(0)}} \right\rangle}.\end{aligned}}\end{aligned} \hspace{\stretch{1}}(3.5)

Degeneracy.

When the initial energy eigenvalue E_m has a degeneracy \gamma_m > 1 we use a different approach to compute the perturbed energy eigenkets and perturbed energy eigenvalues. Writing the kets as {\left\lvert {m\alpha} \right\rangle}, then we assume that the perturbed ket is a superposition of the kets in the degenerate energy level

\begin{aligned}{\left\lvert {m \alpha} \right\rangle}' = \sum_i c_i {\left\lvert {m i} \right\rangle}.\end{aligned} \hspace{\stretch{1}}(4.6)

We find that we must have

\begin{aligned}\left( (E^0 - E)I + \lambda \begin{bmatrix} H_{mi;mj}' \end{bmatrix} \right)\begin{bmatrix}c_1 \\ c_2 \\ \dot{v}s \\ c_{\gamma_m}\end{bmatrix}= 0.\end{aligned} \hspace{\stretch{1}}(4.7)

Diagonalizing this matrix \begin{bmatrix} H_{mi;mj}' \end{bmatrix} (a subset of the complete H' matrix element)

\begin{aligned}\begin{bmatrix}{\left\langle {m i} \right\rvert} H' {\left\lvert {m j} \right\rangle}\end{bmatrix}= U_m \begin{bmatrix}\delta_{ij} \mathcal{H}_{m,i}'\end{bmatrix} U_m^\dagger,\end{aligned} \hspace{\stretch{1}}(4.8)

we find, by taking the determinant, that the perturbed energy eigenvalues are in the set

\begin{aligned}\boxed{E = E_m^0 + \lambda \mathcal{H}_{m,i}', \quad i \in [1, \gamma_m]}\end{aligned} \hspace{\stretch{1}}(4.9)

To compute the perturbed kets we must work in a basis for which the block diagonal matrix elements are diagonal for all m, as in

\begin{aligned}\begin{bmatrix}{\left\langle {m i} \right\rvert} H' {\left\lvert {m j} \right\rangle}\end{bmatrix}= \begin{bmatrix}\delta_{ij} \mathcal{H}_{m,i}'\end{bmatrix}.\end{aligned} \hspace{\stretch{1}}(4.10)

If that is not the case, then the unitary matrices of 4.8 can be computed, and the matrix

\begin{aligned}U = \begin{bmatrix}U_1 &   	&  	 & \\     & U_2 	&  	 & \\     &     	& \ddots & \\     &     	&        & U_N \\ \end{bmatrix},\end{aligned} \hspace{\stretch{1}}(4.11)

can be formed. The kets

\begin{aligned}{\left\lvert {\overline{m \alpha}} \right\rangle} = U^\dagger {\left\lvert {m \alpha} \right\rangle},\end{aligned} \hspace{\stretch{1}}(4.12)

will still be energy eigenkets of the unperturbed Hamiltonian

\begin{aligned}H_0 {\left\lvert {\overline{m \alpha}} \right\rangle} = E_m^0 {\left\lvert {\overline{m \alpha}} \right\rangle},\end{aligned} \hspace{\stretch{1}}(4.13)

but also ensure that the partial diagonalization condition of 4.8 is satisfied. In this basis, dropping overbars, the first order perturbation results found previously for perturbation about a non-degenerate state also hold, allowing us to write

\begin{aligned}\boxed{{\left\lvert {s \alpha} \right\rangle}' = {\left\lvert {s \alpha} \right\rangle} + \lambda \sum_{m \ne s, \beta} \frac{{H'}_{m \beta ; s \alpha}}{ E_s^{(0)} - E_m^{(0)} } {\left\lvert {m \beta} \right\rangle}+ \cdots}\end{aligned} \hspace{\stretch{1}}(4.14)

Interaction picture.

We split of the Hamiltonian into time independent and time dependent parts, and also factorize the time evolution operator

\begin{aligned}\boxed{\begin{aligned}H &= H_0 + H_I(t) \\ {\left\lvert {\alpha_S} \right\rangle} &= e^{-i H_0 t/\hbar } {\left\lvert {\alpha_I(t)} \right\rangle} = e^{-i H_0 t/\hbar } U_I(t) {\left\lvert {\alpha_I(0)} \right\rangle} .\end{aligned}}\end{aligned} \hspace{\stretch{1}}(5.15)

Plugging into Schr\”{o}dinger’s equation we find

\begin{aligned}\boxed{\begin{aligned}i \hbar \frac{d{{}}}{dt} {\left\lvert {\alpha_I(t)} \right\rangle} &= H_I(t) {\left\lvert {\alpha_I(t)} \right\rangle} \\ i \hbar \frac{d{{U_I}}}{dt} &= H_I' U_I \\ H_I'(t) &= e^{i H_0 t/\hbar } H_I(t) e^{-i H_0 t/\hbar } \end{aligned}}\end{aligned} \hspace{\stretch{1}}(5.16)

Time dependent perturbation.

We moved on to time dependent perturbations of the form

\begin{aligned}\boxed{\begin{aligned}H(t) &= H_0 + H'(t) \\ H_0 {\left\lvert {\psi_n^{(0)} } \right\rangle} &= \hbar \omega_n {\left\lvert {\psi_n^{(0)} } \right\rangle}.\end{aligned}}\end{aligned} \hspace{\stretch{1}}(6.17)

where \hbar \omega_n are the energy eigenvalues, and {\left\lvert {\psi_n^{(0)} } \right\rangle} the energy eigenstates of the unperturbed Hamiltonian.

Use of the interaction picture led quickly to the problem of seeking the coefficients describing the perturbed state

\begin{aligned}{\left\lvert {\psi(t)} \right\rangle} = \sum_n c_n(t) e^{-i \omega_n t} {\left\lvert {\psi_n^{(0)} } \right\rangle},\end{aligned} \hspace{\stretch{1}}(6.18)

and plugging in we found

\begin{aligned}\boxed{\begin{aligned}i \hbar \cdot_s &= \sum_n H_{sn}'(t) e^{i \omega_{sn} t} c_n(t) \\ \omega_{sn} &= \omega_s - \omega_n \\ H_{sn}'(t) &= {\left\langle {\psi_s^{(0)}} \right\rvert} H'(t) {\left\lvert {\psi_n^{(0)} } \right\rangle},\end{aligned}}\end{aligned} \hspace{\stretch{1}}(6.19)

Perturbation expansion in series.

Introducing a \lambda parametrized dependence in the perturbation above, and assuming a power series expansion of our coefficients

\begin{aligned}\boxed{\begin{aligned}H'(t) &\rightarrow \lambda H'(t) \\ c_s(t) &= c_s^{(0)}(t) + \lambda c_s^{(1)}(t) + \lambda^2 c_s^{(2)}(t) + \cdots\end{aligned}}\end{aligned} \hspace{\stretch{1}}(6.20)

we found, after equating powers of \lambda a set of coupled differential equations

\begin{aligned}\begin{aligned}i \hbar \cdot_s^{(0)}(t) &= 0  \\ i \hbar \cdot_s^{(1)}(t) &= \sum_{n} H_{sn}'(t) e^{i \omega_{sn} t} c_n^{(0)}(t) \\ i \hbar \cdot_s^{(2)}(t) &= \sum_{n} H_{sn}'(t) e^{i \omega_{sn} t} c_n^{(1)}(t) \\ &\dot{v}s\end{aligned}\end{aligned} \hspace{\stretch{1}}(6.21)

Of particular value was the expansion, assuming that we started with an initial state in energy level m before the perturbation was “turned on” (ie: \lambda = 0).

\begin{aligned}{\left\lvert {\psi(t)} \right\rangle} = e^{-i \omega_m t} {\left\lvert {\psi_m^{(0)} } \right\rangle}\end{aligned} \hspace{\stretch{1}}(6.22)

So that c_n^{(0)}(t) = \delta_{nm}. We then found a first order approximation for the transition probability coefficient of

\begin{aligned}\boxed{i \hbar \cdot_m^{(1)} = H_{ms}'(t) e^{i \omega_{ms} t}}\end{aligned} \hspace{\stretch{1}}(6.23)

Sudden perturbations.

The idea here is that we integrate Schr\”{o}dinger’s equation over the small interval containing the changing Hamiltonian

\begin{aligned}{\left\lvert {\psi(t)} \right\rangle} = {\left\lvert {\psi(t_0)} \right\rangle} + \frac{1}{{i\hbar}} \int_{t_0}^t H(t') {\left\lvert {\psi(t')} \right\rangle} dt'\end{aligned} \hspace{\stretch{1}}(7.24)

and find

\begin{aligned}\boxed{{\left\lvert {\psi_\text{after}} \right\rangle} = {\left\lvert {\psi_\text{before}} \right\rangle}.}\end{aligned} \hspace{\stretch{1}}(7.25)

An implication is that, say, we start with a system measured in a given energy, that same system after the change to the Hamiltonian will then be in a state that is now a superposition of eigenkets from the new Hamiltonian.

Adiabatic perturbations.

Given a Hamiltonian that turns on slowly at t=0, a set of instantaneous eigenkets for the duration of the time dependent interval, and a representation in terms of the instantaneous eigenkets

\begin{aligned}\boxed{\begin{aligned}H(t) &= H_0, \qquad t \le 0 \\ H(t) {\left\lvert {\hat{\psi}_n(t)} \right\rangle} &= E_n(t) {\left\lvert {\hat{\psi}_n(t)} \right\rangle} \\ {\left\lvert {\psi} \right\rangle} &= \sum_n \bar{b}_n(t) e^{-i\alpha_n + i \beta_n} {\left\lvert {\hat{\psi}_n} \right\rangle} \\ \alpha_n(t) &= \frac{1}{{\hbar}} \int_0^t dt' E_n(t'),\end{aligned}}\end{aligned} \hspace{\stretch{1}}(8.26)

plugging into Schr\”{o}dinger’s equation we find

\begin{aligned}\boxed{\begin{aligned}\frac{d{{\bar{b}_m}}}{dt} &= - \sum_{n \ne m} \bar{b}_n e^{-i \gamma_{nm} } {\left\langle {\hat{\psi}_m(t)} \right\rvert} \frac{d{{}}}{dt} {\left\lvert {\hat{\psi}_n(t)} \right\rangle}  \\ \gamma_{nm}(t) &= \alpha_n(t) - \alpha_m(t) - (\beta_n(t) - \beta_m(t)) \\ \beta_n(t) &= \int_0^t dt' \Gamma_n(t') \\ \Gamma_n(t) &= i {\left\langle {\hat{\psi}_n(t)} \right\rvert} \frac{d{{}}}{dt} {\left\lvert {\hat{\psi}_n(t)} \right\rangle} \\ \end{aligned}}\end{aligned} \hspace{\stretch{1}}(8.27)

Evolution of a given state.

Given a system initially measured with energy E_m(0) before the time dependence is “turned on”

\begin{aligned}\boxed{{\left\lvert {\psi(0)} \right\rangle} = {\left\lvert {\hat{\psi}_m(0)} \right\rangle},}\end{aligned} \hspace{\stretch{1}}(8.28)

we find that the first order Taylor series expansion for the transition probability coefficients are

\begin{aligned}\boxed{\bar{b}_s(t) = \delta_{sm} - t (1 - \delta_{sm}) {\left\langle {\hat{\psi}_s(0)} \right\rvert} {\left.{{\frac{d{{}}}{dt} {\left\lvert {\hat{\psi}_m(t)} \right\rangle}}}\right\vert}_{{t=0}}.}\end{aligned} \hspace{\stretch{1}}(8.29)

If we introduce a \lambda perturbation, separating all the (slowly changing) time dependent part of the Hamiltonian H' from the non time dependent parts H_0 as in

\begin{aligned}H(t) = H_0 + \lambda H'(t)\end{aligned} \hspace{\stretch{1}}(8.30)

then we find our perturbed coefficients are

\begin{aligned}\boxed{\bar{b}_s(t) =\delta_{ms}(1 + \lambda \text{constant})- (1-\delta_{ms}) \lambda\int_0^t dt'e^{i \gamma_{sm}(t') } {\left\langle {\hat{\psi}_s(t')} \right\rvert} \frac{d}{dt'} {\left\lvert {\hat{\psi}_m(t')} \right\rangle} }\end{aligned} \hspace{\stretch{1}}(8.31)

WKB.

We write Schr\”{o}dinger’s equation as

\begin{aligned}\boxed{\begin{aligned}0 &= \frac{d^2 U}{dx^2} + k^2 U \\ k^2 &= -\kappa^2 = \frac{2m (E - V)}{\hbar}.\end{aligned}}\end{aligned} \hspace{\stretch{1}}(9.32)

and seek solutions of the form U \propto e^{i\phi}. Schr\”{o}dinger’s equation takes the form

\begin{aligned}- (\phi'(x))^2 + i \phi''(x) + k^2(x) = 0.\end{aligned} \hspace{\stretch{1}}(9.33)

Initially setting \phi'' = 0 we refine our approximation to find

\begin{aligned}\phi'(x) = k(x) \sqrt{ 1 + i \frac{k'(x)}{k^2(x)} } .\end{aligned} \hspace{\stretch{1}}(9.34)

To first order, this gives us

\begin{aligned}\boxed{U(x) \propto \frac{1}{{\sqrt{k(x)}}} e^{\pm i \int dx k(x)} }\end{aligned} \hspace{\stretch{1}}(9.35)

What we didn’t cover in class, but required in the problems was the Bohr-Sommerfeld condition described in section 24.1.2 of the text [1].

\begin{aligned}\boxed{\int_{x_1}^{x_2} dx \sqrt{ 2m (E - V(x))} = \left( n + \frac{1}{{2}} \right) \pi.}\end{aligned} \hspace{\stretch{1}}(9.36)

This was found from the WKB connection formulas, themselves found my some Bessel function arguments that I have to admit that I didn’t understand.

References

[1] BR Desai. Quantum mechanics with basic field theory. Cambridge University Press, 2009.

Posted in Math and Physics Learning. | Tagged: , , , , , | Leave a Comment »

Revisiting adiabatic approximation for expansion around an initial pure state.

Posted by peeterjoot on November 10, 2011

[Click here for a PDF of this post with nicer formatting and figures if the post had any (especially if my latex to wordpress script has left FORMULA DOES NOT PARSE errors.)]

New info. How to do the \lambda expansion.

Asking about this, Federico nicely explained. “The reason why you are going in circles when trying the lambda expansion is because you are not assuming the term {\left\langle {\psi(t)} \right\rvert} (d/dt) {\left\lvert {\psi(t)} \right\rangle} to be of order lambda. This has to be assumed, otherwise it doesn’t make sense at all trying a perturbative approach. This assumption means that the coupling between the level s and the other levels is assumed to be small because the time dependent part of the Hamiltonian is small or changes slowly with time. Making a Taylor expansion in time would be sensible only if you are interested in a short interval of time. The lambda-expansion approach would work for any time as long as the time dependent piece of the Hamiltonian doesn’t change wildly or is too big.”

In the tutorial he outlined another way to justify this. We’ve written so far

\begin{aligned}H = \left\{\begin{array}{l l}H(t) & \quad \mbox{latex t > 0$} \\ H_0 & \quad \mbox{t < 0} \end{array}\right.\end{aligned} \hspace{\stretch{1}}(5.23)$

where H(0) = H_0. We can make this explicit, and introduce a \lambda factor into the picture if we write

\begin{aligned}H(t) = H_0 + \lambda H'(t),\end{aligned} \hspace{\stretch{1}}(5.24)

where H_0 has no time dependence, so that our Hamiltonian is then just the “steady-state” system for \lambda = 0.

Now recall the method from [1] that we can use to relate our bra-derivative-ket to the Hamiltonian. Taking derivatives of the energy identity, braketed between two independent kets (m \ne n) we have

\begin{aligned}0 &= {\left\langle {\hat{\psi}_m(t)} \right\rvert}\frac{d{{}}}{dt} \left(H(t) {\left\lvert {\hat{\psi}_n(t)} \right\rangle} - \hbar \omega_n {\left\lvert {\hat{\psi}_n(t)} \right\rangle} \right) \\ &= {\left\langle {\hat{\psi}_m(t)} \right\rvert}\left(\frac{d{{H(t)}}}{dt} {\left\lvert {\hat{\psi}_n(t)} \right\rangle} +H(t) \frac{d{{}}}{dt} {\left\lvert {\hat{\psi}_n(t)} \right\rangle} -\hbar \frac{d{{\omega_n}}}{dt} {\left\lvert {\hat{\psi}_n(t)} \right\rangle} -\hbar \omega_n \frac{d{{}}}{dt} {\left\lvert {\hat{\psi}_n(t)} \right\rangle} \right) \\ &= \hbar (\omega_m - \omega_n) {\left\langle {\hat{\psi}_m(t)} \right\rvert}\frac{d{{}}}{dt} {\left\lvert {\hat{\psi}_n(t)} \right\rangle} -\not{{\hbar \frac{d{{\omega_n}}}{dt} \delta_{mn}}}+{\left\langle {\hat{\psi}_m(t)} \right\rvert}\frac{d{{H(t)}}}{dt} {\left\lvert {\hat{\psi}_n(t)} \right\rangle} \end{aligned}

So for m \ne n we find a dependence between the bra-derivative-ket and the time derivative of the Hamiltonian

\begin{aligned}{\left\langle {\hat{\psi}_m(t)} \right\rvert}\frac{d{{}}}{dt} {\left\lvert {\hat{\psi}_n(t)} \right\rangle} =\frac{{\left\langle {\hat{\psi}_m(t)} \right\rvert}\frac{d{{H(t)}}}{dt} {\left\lvert {\hat{\psi}_n(t)} \right\rangle} }{\hbar (\omega_n - \omega_m) }\end{aligned} \hspace{\stretch{1}}(5.25)

Referring back to 5.24 we see the \lambda dependence in this quantity, coming directly from the \lambda dependence imposed on the time dependent part of the Hamiltonian

\begin{aligned}{\left\langle {\hat{\psi}_m(t)} \right\rvert}\frac{d{{}}}{dt} {\left\lvert {\hat{\psi}_n(t)} \right\rangle} =\lambda\frac{{\left\langle {\hat{\psi}_m(t)} \right\rvert}\frac{d{{H'(t)}}}{dt} {\left\lvert {\hat{\psi}_n(t)} \right\rangle} }{\hbar (\omega_n - \omega_m) }\end{aligned} \hspace{\stretch{1}}(5.26)

Given this \lambda dependence, let’s revisit the perturbation attempt of 3.11. Our first order factors of \lambda are now

\begin{aligned}\frac{d{{}}}{dt} \bar{b}_s^{(1)}(t) &= - \sum_{n \ne s} \delta_{mn} e^{i \gamma_{sn}(t) } {\left\langle {\hat{\psi}_s(t)} \right\rvert} \frac{d{{}}}{dt} {\left\lvert {\hat{\psi}_n(t)} \right\rangle} \\ &= \left\{\begin{array}{l l}0 & \quad \mbox{if latex m = s$} \\ – e^{i \gamma_{sm}(t) } {\left\langle {\hat{\psi}_s(t)} \right\rvert} \frac{d{{}}}{dt} {\left\lvert {\hat{\psi}_m(t)} \right\rangle} &\quad \mbox{if m \ne s} \\ \end{array}\right.\end{aligned} $

So we find to first order

\begin{aligned}\bar{b}_s(t) =\delta_{ms}(1 + \lambda \text{constant})+ - (1-\delta_{ms}) \lambda\int_0^t dt'e^{i \gamma_{sm}(t') } {\left\langle {\hat{\psi}_s(t')} \right\rvert} \frac{d}{dt'} {\left\lvert {\hat{\psi}_m(t')} \right\rangle} \end{aligned} \hspace{\stretch{1}}(5.27)

A couple observations of this result. One is that the constant factor in the m = s case makes sense. This would likely be a negative contribution since we have to decrease the probability coefficient for finding our wavefunction in the m = s state after perturbation, since we are increasing the probability for finding it elsewhere by changing the Hamiltonian.

Also observe that since e^{i\gamma_{sm}} \sim 0 for small t this is consistent with the first order Taylor series expansion where we found our first order contribution was

\begin{aligned}- (1 - \delta_{ms}) t {\left\langle {\hat{\psi}_s(t)} \right\rvert} \frac{d}{dt} {\left\lvert {\hat{\psi}_m(t)} \right\rangle}.\end{aligned} \hspace{\stretch{1}}(5.28)

Also note that this -e^{i \gamma_{sm}(t') } {\left\langle {\hat{\psi}_s(t')} \right\rvert} \frac{d}{dt'} {\left\lvert {\hat{\psi}_m(t')} \right\rangle} is exactly the difference from 0 that was mentioned in class when the trial solution of \bar{b}_s = \delta_{sm} was tested by plugging it into 2.5, so it’s not too surprising that we should have a factor of exactly this form when we refine our approximation.

A question to consider should we wish to refine the \lambda perturbation to higher than first order in \lambda: is there any sort of \lambda dependence in the e^{i \gamma_{sm}} coming from the \Gamma_{sm} term in that exponential?

References

[1] D. Bohm. Quantum Theory. Courier Dover Publications, 1989.

Posted in Math and Physics Learning. | Tagged: , , , | Leave a Comment »

Second order time evolution for the coefficients of an initially pure ket with an adiabatically changing Hamiltonian.

Posted by peeterjoot on November 6, 2011

[Click here for a PDF of this post with nicer formatting and figures if the post had any (especially if my latex to wordpress script has left FORMULA DOES NOT PARSE errors.)]

Motivation.

In lecture 9, Prof Sipe developed the equations governing the evolution of the coefficients of a given state for an adiabatically changing Hamiltonian. He also indicated that we could do an approximation, finding the evolution of an initially pure state in powers of \lambda (like we did for the solutions of a non-time dependent perturbed Hamiltonian H = H_0 + \lambda H'). I tried doing that a couple of times and always ended up going in circles. I’ll show that here and also develop an expansion in time up to second order as an alternative, which appears to work out nicely.

Review.

We assumed that an adiabatically changing Hamiltonian was known with instantaneous eigenkets governed by

\begin{aligned}H(t) {\left\lvert {\hat{\psi}_n(t)} \right\rangle} = \hbar \omega_n {\left\lvert {\hat{\psi}_n(t)} \right\rangle} \end{aligned} \hspace{\stretch{1}}(2.1)

The problem was to determine the time evolutions of the coefficients \bar{b}_n(t) of some state {\left\lvert {\psi(t)} \right\rangle}, and this was found to be

\begin{aligned}{\left\lvert {\psi(t)} \right\rangle} &= \sum_n \bar{b}_n(t) e^{-i \gamma_n(t)} {\left\lvert {\hat{\psi}_n(t)} \right\rangle} \\ \gamma_s(t) &= \int_0^t dt' (\omega_s(t') - \Gamma_s(t')) \\ \Gamma_s(t) &= i {\left\langle {\hat{\psi}_s(t)} \right\rvert} \frac{d{{}}}{dt} {\left\lvert {\hat{\psi}_s(t)} \right\rangle} \end{aligned} \hspace{\stretch{1}}(2.2)

where the \bar{b}_s(t) coefficient must satisfy the set of LDEs

\begin{aligned}\frac{d{{\bar{b}_s(t)}}}{dt} = - \sum_{n \ne s} \bar{b}_n(t) e^{i \gamma_{sn}(t) } {\left\langle {\hat{\psi}_s(t)} \right\rvert} \frac{d{{}}}{dt} {\left\lvert {\hat{\psi}_n(t)} \right\rangle},\end{aligned} \hspace{\stretch{1}}(2.5)

where

\begin{aligned}\gamma_{sn}(t) = \gamma_{s}(t) - \gamma_{n}(t).\end{aligned} \hspace{\stretch{1}}(2.6)

Solving these in general doesn’t look terribly fun, but perhaps we can find an explicit solution for all the \bar{b}_s‘s, if we simplify the problem somewhat. Suppose that our initial state is found to be in the mth energy level at the time before we start switching on the changing Hamiltonian.

\begin{aligned}{\left\lvert {\psi(0)} \right\rangle} = \bar{b}_m(0) {\left\lvert {\hat{\psi}_m(0)} \right\rangle}.\end{aligned} \hspace{\stretch{1}}(2.7)

We therefore require (up to a phase factor)

\begin{aligned}\begin{array}{l l}\bar{b}_m(0) = 1 & \\ \bar{b}_s(0) = 0 & \quad \mbox{if latex s \ne m$}.\end{array}\end{aligned} \hspace{\stretch{1}}(2.8)$

Equivalently we can write

\begin{aligned}\bar{b}_s(0) = \delta_{ms}\end{aligned} \hspace{\stretch{1}}(2.9)

Going in circles with a \lambda expansion.

In class it was hinted that we could try a \lambda expansion of the following form to determine a solution for the \bar{b}_s coefficients at later times

\begin{aligned}\bar{b}_s(t) = \delta_{ms} + \lambda \bar{b}^{(1)}_s(t) + \cdots\end{aligned} \hspace{\stretch{1}}(3.10)

I wasn’t able to figure out how to make that work. Trying this first to first order, and plugging in, we find

\begin{aligned}\lambda \frac{d{{}}}{dt} \bar{b}^{(1)}_s(t) = - \sum_{n \ne s} ( \delta_{mn} + \lambda \bar{b}^{(1)}_n(t) ) e^{i \gamma_{sn}(t) } {\left\langle {\hat{\psi}_s(t)} \right\rvert} \frac{d{{}}}{dt} {\left\lvert {\hat{\psi}_n(t)} \right\rangle},\end{aligned} \hspace{\stretch{1}}(3.11)

equating powers of \lambda yields two equations

\begin{aligned}\frac{d{{}}}{dt} \bar{b}_s^{(1)}(t) &= - \sum_{n \ne s} \bar{b}^{(1)}_n(t) e^{i \gamma_{sn}(t) } {\left\langle {\hat{\psi}_s(t)} \right\rvert} \frac{d{{}}}{dt} {\left\lvert {\hat{\psi}_n(t)} \right\rangle} \\ 0 &= - \sum_{n \ne s} \delta_{mn} e^{i \gamma_{sn}(t) } {\left\langle {\hat{\psi}_s(t)} \right\rvert} \frac{d{{}}}{dt} {\left\lvert {\hat{\psi}_n(t)} \right\rangle}.\end{aligned} \hspace{\stretch{1}}(3.12)

Observe that the first identity is exactly what we started with in 2.5, but has just replaced the \bar{b}_n‘s with \bar{b}^{(1)}_n‘s. Worse is that the second equation is only satisfied for s = m, and for s \ne m we have

\begin{aligned}0 = - e^{i \gamma_{sm}(t) } {\left\langle {\hat{\psi}_s(t)} \right\rvert} \frac{d{{}}}{dt} {\left\lvert {\hat{\psi}_m(t)} \right\rangle}.\end{aligned} \hspace{\stretch{1}}(3.14)

So this \lambda power series only appears to work if we somehow had {\left\lvert {\hat{\psi}_s(t)} \right\rangle} always orthonormal to the derivative of {\left\lvert {\hat{\psi}_m(t)} \right\rangle}. Perhaps this could be done if the Hamiltonian was also expanded in powers of \lambda, but such a beastie seems foreign to the problem. Note that we don’t even have any explicit dependence on the Hamiltonian in the final \bar{b}_n differential equations, as we’d probably need for such an expansion to work out.

A Taylor series expansion in time.

What we can do is to expand the \bar{b}_n‘s in a power series parametrized by time. That is, again, assuming we started with energy equal to \hbar \omega_m, form

\begin{aligned}\bar{b}_s(t) = \delta_{sm} + \frac{t}{1!} \left( {\left.{{ \frac{d{{}}}{dt}\bar{b}_s(t) }}\right\vert}_{{t=0}} \right)+ \frac{t^2}{2!} \left( {\left.{{ \frac{d^2}{dt^2} \bar{b}_s(t) }}\right\vert}_{{t=0}} \right)+ \cdots\end{aligned} \hspace{\stretch{1}}(4.15)

The first order term we can grab right from 2.5 and find

\begin{aligned}{\left.{{\frac{d{{\bar{b}_s(t)}}}{dt}}}\right\vert}_{{t=0}} &= - \sum_{n \ne s} \bar{b}_n(0) {\left.{{{\left\langle {\hat{\psi}_s(t)} \right\rvert} \frac{d{{}}}{dt} {\left\lvert {\hat{\psi}_n(t)} \right\rangle}}}\right\vert}_{{t=0}} \\ &= - \sum_{n \ne s} \delta_{nm}{\left.{{{\left\langle {\hat{\psi}_s(t)} \right\rvert} \frac{d{{}}}{dt} {\left\lvert {\hat{\psi}_n(t)} \right\rangle}}}\right\vert}_{{t=0}} \\ &=\left\{\begin{array}{l l}0 & \quad \mbox{latex s = m$} \\ – {\left.{{{\left\langle {\hat{\psi}_s(t)} \right\rvert} \frac{d{{}}}{dt} {\left\lvert {\hat{\psi}_m(t)} \right\rangle}}}\right\vert}_{{t=0}} \\ & \quad \mbox{s \ne m} \\ \end{array}\right.\end{aligned} $

Let’s write

\begin{aligned}{\left\lvert {n} \right\rangle} &= {\left\lvert {\hat{\psi}_n(0)} \right\rangle} \\ {\left\lvert {n'} \right\rangle} &= {\left.{{ \frac{d{{}}}{dt}{\left\lvert {\hat{\psi}_n(t)} \right\rangle} }}\right\vert}_{{t=0}}\end{aligned} \hspace{\stretch{1}}(4.16)

So we can write

\begin{aligned}{\left.{{\frac{d{{\bar{b}_s(t)}}}{dt}}}\right\vert}_{{t=0}} =- (1 - \delta_{sm}) \left\langle{{s}} \vert {{m'}}\right\rangle,\end{aligned} \hspace{\stretch{1}}(4.18)

and form, to first order in time our approximation for the coefficient is

\begin{aligned}\bar{b}_s(t) =\delta_{sm} - t (1 - \delta_{sm}) \left\langle{{s}} \vert {{m'}}\right\rangle.\end{aligned} \hspace{\stretch{1}}(4.19)

Let’s do the second order term too. For that we have

\begin{aligned}{\left.{{\frac{d^2}{dt^2} \bar{b}_s(t)}}\right\vert}_{{t=0}} &= - \sum_{n \ne s} {\left.{{\left(\left(\frac{d{{}}}{dt} \bar{b}_n(t) +\delta_{nm} i \frac{d{{\gamma_{sn}(t)}}}{dt}\right)\left\langle{{s}} \vert {{n'}}\right\rangle+\delta_{nm} \frac{d{{}}}{dt} \left( {\left\langle {\hat{\psi}_s(t)} \right\rvert} \frac{d{{}}}{dt} {\left\lvert {\hat{\psi}_n(t)} \right\rangle} \right) \right)}}\right\vert}_{{t=0}}\end{aligned}

For the \gamma_{sn} derivative we note that

\begin{aligned}{\left.{{\frac{d{{}}}{dt} \gamma_s(t)}}\right\vert}_{{t=0}} = \omega_s(0) - i\left\langle{{s}} \vert {{s'}}\right\rangle,\end{aligned} \hspace{\stretch{1}}(4.20)

So we have

\begin{aligned}{\left.{{\frac{d^2}{dt^2} \bar{b}_s(t)}}\right\vert}_{{t=0}} &= - \sum_{n \ne s} \Bigl(- (1 - \delta_{nm}) \left\langle{{n}} \vert {{m'}}\right\rangle+\delta_{nm} i (\omega_{sn}(0) - i\left\langle{{s}} \vert {{s'}}\right\rangle + i\left\langle{{n}} \vert {{n'}}\right\rangle)\Bigr)\left\langle{{s}} \vert {{n'}}\right\rangle+\delta_{nm} \Bigl( \left\langle{{s'}} \vert {{n'}}\right\rangle+\left\langle{{s}} \vert {{n''}}\right\rangle\Bigr)\end{aligned}

Again for s = m, all terms are killed. That’s somewhat surprising, but suggests that we will need to normalize the coefficients after the perturbation calculation, since we have unity for one of them.

For s \ne m we have

\begin{aligned}{\left.{{\frac{d^2}{dt^2} \bar{b}_s(t)}}\right\vert}_{{t=0}} &= \sum_{n \ne s} \Bigl(\left\langle{{n}} \vert {{m'}}\right\rangle-\delta_{nm} i (\omega_{sn}(0) - i\left\langle{{s}} \vert {{s'}}\right\rangle + i\left\langle{{n}} \vert {{n'}}\right\rangle)\Bigr)\left\langle{{s}} \vert {{n'}}\right\rangle-\delta_{nm} \Bigl( \left\langle{{s'}} \vert {{n'}}\right\rangle+\left\langle{{s}} \vert {{n''}}\right\rangle\Bigr) \\ &= -i (\omega_{sm}(0) - i\left\langle{{s}} \vert {{s'}}\right\rangle + i\left\langle{{m}} \vert {{m'}}\right\rangle)\Bigr)\left\langle{{s}} \vert {{m'}}\right\rangle-\Bigl( \left\langle{{s'}} \vert {{m'}}\right\rangle+\left\langle{{s}} \vert {{m''}}\right\rangle\Bigr) +\sum_{n \ne s} \left\langle{{n}} \vert {{m'}}\right\rangle \left\langle{{s}} \vert {{n'}}\right\rangle.\end{aligned}

So we have, for s \ne m

\begin{aligned}{\left.{{\frac{d^2}{dt^2} \bar{b}_s(t)}}\right\vert}_{{t=0}} = (\left\langle{{m}} \vert {{m'}}\right\rangle - \left\langle{{s}} \vert {{s'}}\right\rangle ) \left\langle{{s}} \vert {{m'}}\right\rangle-i \omega_{sm}(0) \left\langle{{s}} \vert {{m'}}\right\rangle-\left\langle{{s'}} \vert {{m'}}\right\rangle-\left\langle{{s}} \vert {{m''}}\right\rangle+\sum_{n \ne s} \left\langle{{n}} \vert {{m'}}\right\rangle \left\langle{{s}} \vert {{n'}}\right\rangle.\end{aligned} \hspace{\stretch{1}}(4.21)

It’s not particularly illuminating looking, but possible to compute, and we can use it to form a second order approximate solution for our perturbed state.

\begin{aligned}\begin{aligned}\bar{b}_s(t) &=\delta_{sm} - t (1 - \delta_{sm}) \left\langle{{s}} \vert {{m'}}\right\rangle \\ &+(1 - \delta_{sm})\left((\left\langle{{m}} \vert {{m'}}\right\rangle - \left\langle{{s}} \vert {{s'}}\right\rangle ) \left\langle{{s}} \vert {{m'}}\right\rangle-i \omega_{sm}(0) \left\langle{{s}} \vert {{m'}}\right\rangle-\left\langle{{s'}} \vert {{m'}}\right\rangle-\left\langle{{s}} \vert {{m''}}\right\rangle+\sum_{n \ne s} \left\langle{{n}} \vert {{m'}}\right\rangle \left\langle{{s}} \vert {{n'}}\right\rangle\right) \frac{t^2}{2}\end{aligned}\end{aligned} \hspace{\stretch{1}}(4.22)

Posted in Math and Physics Learning. | Tagged: , , , , | Leave a Comment »

PHY456H1F: Quantum Mechanics II. Recitation 3 (Taught by Mr. Federico Duque Gomez). WKB method and Stark shift.

Posted by peeterjoot on October 28, 2011

[Click here for a PDF of this post with nicer formatting and figures if the post had any (especially if my latex to wordpress script has left FORMULA DOES NOT PARSE errors.)]

Disclaimer.

Peeter’s lecture notes from class. May not be entirely coherent.

WKB method.

Consider the potential

\begin{aligned}V(x) = \left\{\begin{array}{l l}v(x) & \quad \mbox{if latex x \in [0,a]$} \\ \infty & \quad \mbox{otherwise} \\ \end{array}\right.\end{aligned} \hspace{\stretch{1}}(2.1)$

as illustrated in figure (\ref{fig:qmTwoR3:qmTwoR3fig1})
\begin{figure}[htp]
\centering
\includegraphics[totalheight=0.4\textheight]{qmTwoR3fig1}
\caption{Arbitrary potential in an infinite well.}
\end{figure}

Inside the well, we have

\begin{aligned}\psi(x) = \frac{1}{{\sqrt{k(x)}}} \left( C_{+} e^{i \int_0^x k(x') dx'}+C_{-} e^{-i \int_0^x k(x') dx'}\right)\end{aligned} \hspace{\stretch{1}}(2.2)

where

\begin{aligned}k(x) = \frac{1}{{\hbar}} \sqrt{ 2m( E - v(x) }\end{aligned} \hspace{\stretch{1}}(2.3)

With

\begin{aligned}\phi(x) = e^{\int_0^x k(x') dx'}\end{aligned} \hspace{\stretch{1}}(2.4)

We have

\begin{aligned}\psi(x) &= \frac{1}{{\sqrt{k(x)}}} \left( C_{+}(\cos \phi + i\sin\phi) + C_{-}(\cos\phi - i \sin\phi)\right) \\ &= \frac{1}{{\sqrt{k(x)}}} \left( (C_{+} + C_{-})\cos \phi + i(C_{+} - C_{-}) \sin\phi\right) \\ &= \frac{1}{{\sqrt{k(x)}}} \left( (C_{+} + C_{-})\cos \phi + i(C_{+} - C_{-}) \sin\phi\right) \\ &\equiv \frac{1}{{\sqrt{k(x)}}} \left( C_2 \cos \phi + C_1 \sin\phi\right),\end{aligned}

Where

\begin{aligned}C_2 &= C_{+} + C_{-} \\ C_1 &= i( C_{+} - C_{-})\end{aligned} \hspace{\stretch{1}}(2.5)

Setting boundary conditions we have

\begin{aligned}\phi(0) = 0\end{aligned} \hspace{\stretch{1}}(2.7)

Noting that we have \phi(0) = 0, we have

\begin{aligned}\frac{1}{{\sqrt{k(0)}}} C_2 = 0\end{aligned} \hspace{\stretch{1}}(2.8)

So

\begin{aligned}\psi(x) \sim\frac{1}{{\sqrt{k(x)}}} \sin\phi\end{aligned} \hspace{\stretch{1}}(2.9)

At the other boundary

\begin{aligned}\psi(a) = 0\end{aligned} \hspace{\stretch{1}}(2.10)

So we require

\begin{aligned}\sin \phi(a) = \sin(n \pi)\end{aligned} \hspace{\stretch{1}}(2.11)

or

\begin{aligned}\frac{1}{{\hbar}} \int_0^a \sqrt{2 m (E - v(x')} dx' = n \pi\end{aligned} \hspace{\stretch{1}}(2.12)

This is called the Bohr-Sommerfeld condition.

Check with v(x) = 0.

We have

\begin{aligned}\frac{1}{{\hbar}} \sqrt{2m E} a = n \pi\end{aligned} \hspace{\stretch{1}}(2.13)

or

\begin{aligned}E = \frac{1}{{2m}} \left(\frac{n \pi \hbar}{a}\right)^2\end{aligned} \hspace{\stretch{1}}(2.14)

Stark Shift

Time independent perturbation theory

\begin{aligned}H = H_0 + \lambda H'\end{aligned} \hspace{\stretch{1}}(3.15)

\begin{aligned}H' = e \mathcal{E}_z \hat{Z}\end{aligned} \hspace{\stretch{1}}(3.16)

where \mathcal{E}_z is the electric field.

To first order we have

\begin{aligned}{\left\lvert {\psi_\alpha^{(1)}} \right\rangle} = {\left\lvert {\psi_\alpha^{(0)}} \right\rangle} + \sum_{\beta \ne \alpha} \frac{ {\left\lvert {\psi_\beta^{(0)}} \right\rangle} {\left\langle {\psi_\beta^{(0)}} \right\rvert} H' {\left\lvert {\psi_\alpha^{(0)}} \right\rangle} }{E_\alpha^{(0)} -E_\beta^{(0)} }\end{aligned} \hspace{\stretch{1}}(3.17)

and

\begin{aligned}E_\alpha^{(1)} = {\left\langle {\psi_\alpha^{(0)}} \right\rvert} H' {\left\lvert {\psi_\alpha^{(0)}} \right\rangle} \end{aligned} \hspace{\stretch{1}}(3.18)

With the default basis \{{\left\lvert {\psi_\beta^{(0)}} \right\rangle}\}, and n=2 we have a 4 fold degeneracy

\begin{aligned}l,m &= 0,0 \\ l,m &= 1,-1 \\ l,m &= 1,0 \\ l,m &= 1,+1\end{aligned}

but can diagonalize as follows

\begin{aligned}\begin{bmatrix}\text{nlm} & 200 & 210 & 211 & 21\,-1 \\ 200    & 0 & \Delta & 0 & 0 \\ 210    & \Delta & 0 & 0 & 0 \\ 211    & 0 & 0 & 0 & 0 \\ 21\,-1 & 0 & 0 & 0 & 0\end{bmatrix}\end{aligned} \hspace{\stretch{1}}(3.19)

FIXME: show.

where

\begin{aligned}\Delta = -3 e \mathcal{E}_z a_0\end{aligned} \hspace{\stretch{1}}(3.20)

We have a split of energy levels as illustrated in figure (\ref{fig:qmTwoR3:qmTwoR3fig2})

\begin{figure}[htp]
\centering
\includegraphics[totalheight=0.4\textheight]{qmTwoR3fig2}
\caption{Energy level splitting}
\end{figure}

Observe the embedded Pauli matrix (FIXME: missed the point of this?)

\begin{aligned}\sigma_x = \begin{bmatrix} 0 & 1 \\ 1 & 0 \\ \end{bmatrix}\end{aligned} \hspace{\stretch{1}}(3.21)

Proper basis for perturbation (FIXME:check) is then

\begin{aligned}\left\{\frac{1}{{\sqrt{2}}}( {\left\lvert {2,0,0} \right\rangle} \pm {\left\lvert {2,1,0} \right\rangle} ), {\left\lvert {2, 1, \pm 1} \right\rangle}\right\}\end{aligned} \hspace{\stretch{1}}(3.22)

and our result is

\begin{aligned}{\left\lvert {\psi_{\alpha, n=2}^{(1)}} \right\rangle} = {\left\lvert {\psi_{\alpha}^{(0)}} \right\rangle} +\sum_{\beta \notin \text{degenerate subspace}} \frac{ {\left\lvert {\psi_\beta^{(0)}} \right\rangle} {\left\langle {\psi_\beta^{(0)}} \right\rvert} H' {\left\lvert {\psi_\alpha^{(0)}} \right\rangle} }{E_\alpha^{(0)} -E_\beta^{(0)} }\end{aligned} \hspace{\stretch{1}}(3.23)

Adiabatic perturbation theory

Utilizing instantaneous eigenstates

\begin{aligned}{\left\lvert {\psi(t)} \right\rangle} = \sum_{\alpha} b_\alpha(t) {\left\lvert {\hat{\psi}_\alpha(t)} \right\rangle}\end{aligned} \hspace{\stretch{1}}(4.24)

where

\begin{aligned}H(t) {\left\lvert {\hat{\psi}_\alpha(t)} \right\rangle}= E_\alpha(t) {\left\lvert {\hat{\psi}_\alpha(t)} \right\rangle}\end{aligned} \hspace{\stretch{1}}(4.25)

We found

\begin{aligned}b_\alpha(t) = \bar{b}_\alpha(t) e^{-\frac{i}{\hbar} \int_0^t (E_\alpha(t') - \hbar \Gamma_\alpha(t')) dt'}\end{aligned} \hspace{\stretch{1}}(4.26)

where

\begin{aligned}\Gamma_\alpha = i{\left\langle {\hat{\psi}_\alpha(t)} \right\rvert}\frac{d{{}}}{dt} {\left\lvert {\hat{\psi}_\alpha(t)} \right\rangle}\end{aligned} \hspace{\stretch{1}}(4.27)

and

\begin{aligned}\frac{d{{}}}{dt}\bar{b}_\alpha(t)=-\sum_{\beta \ne \alpha} \bar{b}_\beta(t)e^{-\frac{i}{\hbar} \int_0^t (E_{\beta\alpha}(t') - \hbar \Gamma_{\beta\alpha}(t')) dt'}{\left\langle {\hat{\psi}_\alpha(t)} \right\rvert}\frac{d{{}}}{dt} {\left\lvert {\hat{\psi}_\beta(t)} \right\rangle}\end{aligned} \hspace{\stretch{1}}(4.36)

Suppose we start in a subspace

\begin{aligned}\text{span} \left\{\frac{1}{{\sqrt{2}}}( {\left\lvert {2,0,0} \right\rangle} \pm {\left\lvert {2,1,0} \right\rangle} ), {\left\lvert {2, 1, \pm 1} \right\rangle}\right\}\end{aligned} \hspace{\stretch{1}}(4.29)

Now expand the bra derivative kets

\begin{aligned}{\left\langle {\hat{\psi}_\alpha(t)} \right\rvert}\frac{d{{}}}{dt} {\left\lvert {\hat{\psi}_\beta(t)} \right\rangle}=\left({\left\langle {\psi_{\alpha}^{(0)}} \right\rvert} +\sum_{\gamma} \frac{ {\left\langle {\psi_\gamma^{(0)}} \right\rvert} H' {\left\lvert {\psi_\alpha^{(0)}} \right\rangle} {\left\langle {\psi_\gamma^{(0)}} \right\rvert} }{E_\alpha^{(0)} -E_\gamma^{(0)} }\right)\frac{d{{}}}{dt}\left({\left\lvert {\psi_{\beta}^{(0)}} \right\rangle} +\sum_{\gamma'} \frac{ {\left\lvert {\psi_{\gamma'}^{(0)}} \right\rangle} {\left\langle {\psi_{\gamma'}^{(0)}} \right\rvert} H' {\left\lvert {\psi_\beta^{(0)}} \right\rangle} }{E_\beta^{(0)} -E_{\gamma'}^{(0)} }\right)\end{aligned} \hspace{\stretch{1}}(4.30)

To first order we can drop the quadratic terms in \gamma,\gamma' leaving

\begin{aligned}\begin{aligned}{\left\langle {\hat{\psi}_\alpha(t)} \right\rvert}\frac{d{{}}}{dt} {\left\lvert {\hat{\psi}_\beta(t)} \right\rangle}&\sim\sum_{\gamma'} \left\langle{{\psi_{\alpha}^{(0)}}} \vert {{\psi_{\gamma'}^{(0)}}}\right\rangle \frac{ {\left\langle {\psi_{\gamma'}^{(0)}} \right\rvert} \frac{d{{H'(t)}}}{dt} {\left\lvert {\psi_\beta^{(0)}} \right\rangle} }{E_\beta^{(0)} -E_{\gamma'}^{(0)} }&=\frac{ {\left\langle {\psi_{\alpha}^{(0)}} \right\rvert} \frac{d{{H'(t)}}}{dt} {\left\lvert {\psi_\beta^{(0)}} \right\rangle} }{E_\beta^{(0)} -E_{\alpha}^{(0)} }\end{aligned}\end{aligned} \hspace{\stretch{1}}(4.31)

so

\begin{aligned}\frac{d{{}}}{dt}\bar{b}_\alpha(t)=-\sum_{\beta \ne \alpha} \bar{b}_\beta(t)e^{-\frac{i}{\hbar} \int_0^t (E_{\beta\alpha}(t') - \hbar \Gamma_{\beta\alpha}(t')) dt'}\frac{ {\left\langle {\psi_{\alpha}^{(0)}} \right\rvert} \frac{d{{H'(t)}}}{dt} {\left\lvert {\psi_\beta^{(0)}} \right\rangle} }{E_\beta^{(0)} -E_{\alpha}^{(0)} }\end{aligned} \hspace{\stretch{1}}(4.32)

A different way to this end result.

A result of this form is also derived in [1] section 20.1, but with a different approach. There he takes derivatives of

\begin{aligned}H(t) {\left\lvert {\hat{\psi}_\beta(t)} \right\rangle} = E_\beta(t) {\left\lvert {\hat{\psi}_\beta(t)} \right\rangle},\end{aligned} \hspace{\stretch{1}}(4.33)

\begin{aligned}\frac{d{{H(t)}}}{dt} {\left\lvert {\hat{\psi}_\beta(t)} \right\rangle} + H(t) \frac{d{{}}}{dt}{\left\lvert {\hat{\psi}_\beta(t)} \right\rangle} = \frac{d{{E_\beta(t)}}}{dt} {\left\lvert {\hat{\psi}_\beta(t)} \right\rangle}+ E_\beta(t) \frac{d{{}}}{dt} {\left\lvert {\hat{\psi}_\beta(t)} \right\rangle}\end{aligned} \hspace{\stretch{1}}(4.34)

Bra’ing {\left\langle {\hat{\psi}_\alpha(t)} \right\rvert} into this we have, for \alpha \ne \beta

\begin{aligned}{\left\langle {\hat{\psi}_\alpha(t)} \right\rvert}\frac{d{{H(t)}}}{dt} {\left\lvert {\hat{\psi}_\beta(t)} \right\rangle} + {\left\langle {\hat{\psi}_\alpha(t)} \right\rvert}H(t) \frac{d{{}}}{dt}{\left\lvert {\hat{\psi}_\beta(t)} \right\rangle} &= \not{{{\left\langle {\hat{\psi}_\alpha(t)} \right\rvert}\frac{d{{E_\beta(t)}}}{dt} {\left\lvert {\hat{\psi}_\beta(t)} \right\rangle}}}+ {\left\langle {\hat{\psi}_\alpha(t)} \right\rvert}E_\beta(t) \frac{d{{}}}{dt} {\left\lvert {\hat{\psi}_\beta(t)} \right\rangle} \\ {\left\langle {\hat{\psi}_\alpha(t)} \right\rvert}\frac{d{{H(t)}}}{dt} {\left\lvert {\hat{\psi}_\beta(t)} \right\rangle} + E_\alpha(t) {\left\langle {\hat{\psi}_\alpha(t)} \right\rvert}\frac{d{{}}}{dt}{\left\lvert {\hat{\psi}_\beta(t)} \right\rangle} &=\end{aligned}

or

\begin{aligned}{\left\langle {\hat{\psi}_\alpha(t)} \right\rvert}\frac{d{{}}}{dt}{\left\lvert {\hat{\psi}_\beta(t)} \right\rangle} =\frac{{\left\langle {\hat{\psi}_\alpha(t)} \right\rvert}\frac{d{{H(t)}}}{dt} {\left\lvert {\hat{\psi}_\beta(t)} \right\rangle} }{E_\beta(t) - E_\alpha(t)}\end{aligned} \hspace{\stretch{1}}(4.35)

so without the implied \lambda perturbation of {\left\lvert {\hat{\psi}_\alpha(t)} \right\rangle} we can from 4.36 write the exact generalization of 4.32 as

\begin{aligned}\frac{d{{}}}{dt}\bar{b}_\alpha(t)=-\sum_{\beta \ne \alpha} \bar{b}_\beta(t)e^{-\frac{i}{\hbar} \int_0^t (E_{\beta\alpha}(t') - \hbar \Gamma_{\beta\alpha}(t')) dt'}\frac{{\left\langle {\hat{\psi}_\alpha(t)} \right\rvert}\frac{d{{H(t)}}}{dt} {\left\lvert {\hat{\psi}_\beta(t)} \right\rangle} }{E_\beta(t) - E_\alpha(t)}\end{aligned} \hspace{\stretch{1}}(4.36)

References

[1] D. Bohm. Quantum Theory. Courier Dover Publications, 1989.

Posted in Math and Physics Learning. | Tagged: , , , , | Leave a Comment »

PHY456H1F: Quantum Mechanics II. Lecture 8 (Taught by Prof J.E. Sipe). Time dependent pertubation (cont.)

Posted by peeterjoot on October 8, 2011

[Click here for a PDF of this post with nicer formatting (especially if my latex to wordpress script has left FORMULA DOES NOT PARSE errors.)]

Disclaimer.

Peeter’s lecture notes from class. May not be entirely coherent.

Time dependent pertubation.

We’d gotten as far as calculating

\begin{aligned}c_m^{(1)}(\infty) = \frac{1}{{i \hbar}} \boldsymbol{\mu}_{ms} \cdot \mathbf{E}(\omega_{ms})\end{aligned} \hspace{\stretch{1}}(2.1)

where

\begin{aligned}\mathbf{E}(t) = \int \frac{d\omega}{2 \pi} \mathbf{E}(\omega) e^{-i \omega t},\end{aligned} \hspace{\stretch{1}}(2.2)

and

\begin{aligned}\omega_{ms} = \frac{E_m - E_s}{\hbar}.\end{aligned} \hspace{\stretch{1}}(2.3)

Graphically, these frequencies are illustrated in figure (\ref{fig:qmTwoL8fig0FrequenciesAbsorbtionAndEmission})

\begin{figure}[htp]
\centering
\includegraphics[totalheight=0.2\textheight]{qmTwoL8fig0FrequenciesAbsorbtionAndEmission}
\caption{Positive and negative frequencies.}
\end{figure}

The probability for a transition from m to s is therefore

\begin{aligned}\rho_{m \rightarrow s} = {\left\lvert{ c_m^{(1)}(\infty) }\right\rvert}^2= \frac{1}{{\hbar}}^2 {\left\lvert{\boldsymbol{\mu}_{ms} \cdot \mathbf{E}(\omega_{ms})}\right\rvert}^2\end{aligned} \hspace{\stretch{1}}(2.4)

Recall that because the electric field is real we had

\begin{aligned}{\left\lvert{\mathbf{E}(\omega)}\right\rvert}^2 = {\left\lvert{\mathbf{E}(-\omega)}\right\rvert}^2.\end{aligned} \hspace{\stretch{1}}(2.5)

Suppose that we have a wave pulse, where our field magnitude is perhaps of the form

\begin{aligned}E(t) = e^{-t^2/T^2} \cos(\omega_0 t),\end{aligned} \hspace{\stretch{1}}(2.6)

as illustated with \omega = 10, T = 1 in figure (\ref{fig:gaussianWavePacket}).

\begin{figure}[htp]
\centering
\includegraphics[totalheight=0.2\textheight]{gaussianWavePacket}
\caption{Gaussian wave packet}
\end{figure}

We expect this to have a two lobe Fourier spectrum, with the lobes centered at \omega = \pm 10, and width proportional to 1/T.

For reference, as calculated using Mathematica this Fourier transform is

\begin{aligned}E(\omega) = \frac{e^{-\frac{1}{4} T^2 (\omega_0+\omega )^2}}{2 \sqrt{\frac{2}{T^2}}}+\frac{e^{\omega_0 T^2 \omega -\frac{1}{4} T^2 (\omega_0+\omega )^2}}{2 \sqrt{\frac{2}{T^2}}}\end{aligned} \hspace{\stretch{1}}(2.7)

This is illustrated, again for \omega_0 = 10, and T=1, in figure (\ref{fig:FTgaussianWavePacket})

\begin{figure}[htp]
\centering
\includegraphics[totalheight=0.2\textheight]{FTgaussianWavePacket}
\caption{FTgaussianWavePacket}
\end{figure}

where we see the expected Gaussian result, since the Fourier transform of a Gaussian is a Gaussian.

FIXME: not sure what the point of this was?

Sudden pertubations.

Given our wave equation

\begin{aligned}i \hbar \frac{d{{}}}{dt} {\lvert {\psi(t)} \rangle} = H(t) {\lvert {\psi(t)} \rangle}\end{aligned} \hspace{\stretch{1}}(3.8)

and a sudden pertubation in the Hamiltonian, as illustrated in figure (\ref{fig:suddenStepHamiltonian})

\begin{figure}[htp]
\centering
\includegraphics[totalheight=0.2\textheight]{suddenStepHamiltonian}
\caption{Sudden step Hamiltonian.}
\end{figure}

Consider H_0 and H_F fixed, and decrease \Delta t \rightarrow 0. We can formally integrate 3.8

\begin{aligned}\frac{d{{}}}{dt} {\lvert {\psi(t)} \rangle} = \frac{1}{{i \hbar}} H(t) {\lvert {\psi(t)} \rangle}\end{aligned} \hspace{\stretch{1}}(3.9)

For

\begin{aligned}{\lvert {\psi(t)} \rangle} -{\lvert {\psi(t_0)} \rangle} = \frac{1}{{i \hbar}} \int_{t_0}^t H(t') {\lvert {\psi(t')} \rangle} dt'.\end{aligned} \hspace{\stretch{1}}(3.10)

While this is an exact solution, it is also not terribly useful since we don’t know {\lvert {\psi(t)} \rangle}. However, we can select the small interval \Delta t, and write

\begin{aligned}{\lvert {\psi(\Delta t/2)} \rangle} ={\lvert {\psi(-\Delta t/2)} \rangle}+ \frac{1}{{i \hbar}} \int_{t_0}^t H(t') {\lvert {\psi(t')} \rangle} dt'.\end{aligned} \hspace{\stretch{1}}(3.11)

Note that we could use the integral kernel iteration technique here and substitute {\lvert {\psi(t')} \rangle} = {\lvert {\psi(-\Delta t/2)} \rangle} and then develop this, to generate a power series with (\Delta t/2)^k dependence. However, we note that 3.11 is still an exact relation, and if \Delta t \rightarrow 0, with the integration limits narrowing (provided H(t') is well behaved) we are left with just

\begin{aligned}{\lvert {\psi(\Delta t/2)} \rangle} = {\lvert {\psi(-\Delta t/2)} \rangle}\end{aligned} \hspace{\stretch{1}}(3.12)

Or

\begin{aligned}{\lvert {\psi_{\text{after}}} \rangle} = {\lvert {\psi_{\text{before}}} \rangle},\end{aligned} \hspace{\stretch{1}}(3.13)

provided that we change the Hamiltonian fast enough. On the surface there appears to be no consequences, but there are some very serious ones!

Example: Harmonic oscillator.

Consider our harmonic oscillator Hamiltonian, with

\begin{aligned}H_0 &= \frac{P^2}{2m} + \frac{1}{{2}} m \omega_0^2 X^2 \\ H_F &= \frac{P^2}{2m} + \frac{1}{{2}} m \omega_F^2 X^2\end{aligned} \hspace{\stretch{1}}(3.14)

Here \omega_0 \rightarrow \omega_F continuously, but very quickly. In effect, we have tightened the spring constant. Note that there are cases in linear optics when you can actually do exactly that.

Imagine that {\lvert {\psi_{\text{before}}} \rangle} is in the ground state of the harmonic oscillator as in figure (\ref{fig:suddenHamiltonianPertubationHO})

\begin{figure}[htp]
\centering
\includegraphics[totalheight=0.2\textheight]{suddenHamiltonianPertubationHO}
\caption{Harmonic oscillator sudden Hamiltonian pertubation.}
\end{figure}

and we suddenly change the Hamilontian with potential V_0 \rightarrow V_F (weakening the “spring”). Professor Sipe gives us a graphical demo of this, by impersonating a constrained wavefunction with his arms, doing weak chicken-flapping of them. Now with the potential weakended, he wiggles and flaps his arms with more freedom and somewhat chaotically. His “wave function” arms are now bouncing around in the new limiting potential (initally over doing it and then bouncing back).

We had in this case the exact relation

\begin{aligned}H_0 {\lvert {\psi_0^{(0)}} \rangle} = \frac{1}{{2}} \hbar \omega_0 {\lvert {\psi_0^{(0)}} \rangle}\end{aligned} \hspace{\stretch{1}}(3.16)

but we also have

\begin{aligned}{\lvert {\psi_{\text{after}}} \rangle} = {\lvert {\psi_{\text{before}}} \rangle} = {\lvert {\psi_0^{(0)}} \rangle}\end{aligned} \hspace{\stretch{1}}(3.17)

and

\begin{aligned}H_F {\lvert {\psi_n^{(f)}} \rangle} = \frac{1}{{2}} \hbar \omega_F \left( n + \frac{1}{{2}} \right) {\lvert {\psi_n^{(f)}} \rangle}\end{aligned} \hspace{\stretch{1}}(3.18)

So

\begin{aligned}{\lvert {\psi_{\text{after}}} \rangle}&={\lvert {\psi_0^{(0)}} \rangle} \\ &=\sum_n {\lvert {\psi_n^{(f)}} \rangle}\underbrace{\left\langle{{\psi_n^{(f)}}} \vert {{\psi_0^{(0)}}}\right\rangle }_{c_n} \\ &=\sum_n c_n {\lvert {\psi_n^{(f)}} \rangle}\end{aligned}

and at later times

\begin{aligned}{\lvert {\psi(t)^{(f)}} \rangle}&={\lvert {\psi_0^{(0)}} \rangle} \\ &=\sum_n c_n e^{i \omega_n^{(f)} t} {\lvert {\psi_n^{(f)}} \rangle},\end{aligned}

whereas

\begin{aligned}{\lvert {\psi(t)^{(o)}} \rangle}&=e^{i \omega_0^{(0)} t} {\lvert {\psi_0^{(0)}} \rangle},\end{aligned}

So, while the wave functions may be exactly the same after such a sudden change in Hamiltonian, the dynamics of the situation change for all future times, since we now have a wavefunction that has a different set of components in the basis for the new Hamiltonian. In particular, the evolution of the wave function is now significantly more complex.

FIXME: plot an example of this.

Adiabatic pertubations.

FIXME: what does Adiabatic mean in this context. The usage in class sounds like it was just “really slow and gradual”, yet this has a definition “Of, relating to, or being a reversible thermodynamic process that occurs without gain or loss of heat and without a change in entropy”.

This is treated in section 17.5.2 of the text [1].

This is the reverse case, and we now vary the Hamiltonian H(t) very slowly.

\begin{aligned}\frac{d{{}}}{dt} {\lvert {\psi(t)} \rangle} = \frac{1}{{i \hbar}} H(t) {\lvert {\psi(t)} \rangle}\end{aligned} \hspace{\stretch{1}}(4.19)

We first consider only non-degenerate states, and at t = 0 write

\begin{aligned}H(0) = H_0,\end{aligned} \hspace{\stretch{1}}(4.20)

and

\begin{aligned}H_0 {\lvert {\psi_s^{(0)}} \rangle} = E_s^{(0)} {\lvert {\psi_s^{(0)}} \rangle}\end{aligned} \hspace{\stretch{1}}(4.21)

Imagine that at each time t we can find the “instantaneous” energy eigenstates

\begin{aligned}H(t) {\lvert {\hat{\psi}_s(t)} \rangle} = E_s(t) {\lvert {\hat{\psi}_s(t)} \rangle} \end{aligned} \hspace{\stretch{1}}(4.22)

These states do not satisfy Schr\”{o}dinger’s equation, but are simply solutions to the eigen problem. Our standard strategy in pertubation is based on analysis of

\begin{aligned}{\lvert {\psi(t)} \rangle} = \sum_n c_n(t) e^{- i \omega_n^{(0)} t} {\lvert {\psi_n^{(0)} } \rangle},\end{aligned} \hspace{\stretch{1}}(4.23)

Here instead

\begin{aligned}{\lvert {\psi(t)} \rangle} = \sum_n b_n(t) {\lvert {\hat{\psi}_n(t)} \rangle},\end{aligned} \hspace{\stretch{1}}(4.24)

we will expand, not using our initial basis, but instead using the instananeous kets. Plugging into Schr\”{o}dinger’s equation we have

\begin{aligned}H(t) {\lvert {\psi(t)} \rangle} &= H(t) \sum_n b_n(t) {\lvert {\hat{\psi}_n(t)} \rangle} \\ &= \sum_n b_n(t) E_n(t) {\lvert {\hat{\psi}_n(t)} \rangle} \end{aligned}

This was complicated before with matrix elements all over the place. Now it is easy, however, the time derivative becomes harder. Doing that we find

\begin{aligned}i \hbar \frac{d{{}}}{dt} {\lvert {\psi(t)} \rangle}&=i \hbar\frac{d{{}}}{dt} \sum_n b_n(t) {\lvert {\hat{\psi}_n(t)} \rangle} \\ &=i \hbar\sum_n \frac{d{{b_n(t)}}}{dt} {\lvert {\hat{\psi}_n(t)} \rangle} + \sum_n b_n(t) \frac{d{{}}}{dt} {\lvert {\hat{\psi}_n(t)} \rangle} \\ &= \sum_n b_n(t) E_n(t) {\lvert {\hat{\psi}_n(t)} \rangle} \end{aligned}

We bra {\langle {\hat{\psi}_m(t)} \rvert} into this

\begin{aligned}i \hbar\sum_n \frac{d{{b_n(t)}}}{dt} \left\langle{{\hat{\psi}_m(t)}} \vert {{\hat{\psi}_n(t)}}\right\rangle+ \sum_n b_n(t) {\langle {\hat{\psi}_m(t)} \rvert}\frac{d{{}}}{dt} {\lvert {\hat{\psi}_n(t)} \rangle} = \sum_n b_n(t) E_n(t) \left\langle{{\hat{\psi}_m(t)}} \vert {{\hat{\psi}_n(t)}}\right\rangle ,\end{aligned} \hspace{\stretch{1}}(4.25)

and find

\begin{aligned}i \hbar\frac{d{{b_m(t)}}}{dt} + \sum_n b_n(t) {\langle {\hat{\psi}_m(t)} \rvert}\frac{d{{}}}{dt} {\lvert {\hat{\psi}_n(t)} \rangle} = b_m(t) E_m(t) \end{aligned} \hspace{\stretch{1}}(4.26)

If the Hamiltonian is changed very very slowly in time, we can imagine that {\lvert {\hat{\psi}_n(t)} \rangle}' is also changing very very slowly, but we are not quite there yet. Let’s first split our sum of bra and ket products

\begin{aligned}\sum_n b_n(t) {\langle {\hat{\psi}_m(t)} \rvert}\frac{d{{}}}{dt} {\lvert {\hat{\psi}_n(t)} \rangle} \end{aligned} \hspace{\stretch{1}}(4.27)

into n \ne m and n = m terms. Looking at just the n = m term

\begin{aligned}{\langle {\hat{\psi}_m(t)} \rvert}\frac{d{{}}}{dt} {\lvert {\hat{\psi}_n(t)} \rangle} \end{aligned} \hspace{\stretch{1}}(4.28)

we note

\begin{aligned}0 &=\frac{d{{}}}{dt} \left\langle{{\hat{\psi}_m(t)}} \vert {{\hat{\psi}_n(t)}}\right\rangle \\ &=\left( \frac{d{{}}}{dt} {\langle {\hat{\psi}_m(t)} \rvert} \right) {\lvert {\hat{\psi}_m(t)} \rangle} \\ + {\langle {\hat{\psi}_m(t)} \rvert} \frac{d{{}}}{dt} {\lvert {\hat{\psi}_m(t)} \rangle} \\ \end{aligned}

Something plus its complex conjugate equals 0

\begin{aligned}a + i b + (a + i b)^{*} = 2 a = 0 \implies a = 0,\end{aligned} \hspace{\stretch{1}}(4.29)

so {\langle {\hat{\psi}_m(t)} \rvert} \frac{d{{}}}{dt} {\lvert {\hat{\psi}_m(t)} \rangle} must be purely imaginary. We write

\begin{aligned}{\langle {\hat{\psi}_m(t)} \rvert} \frac{d{{}}}{dt} {\lvert {\hat{\psi}_m(t)} \rangle} = -i \Gamma_s(t),\end{aligned} \hspace{\stretch{1}}(4.30)

where \Gamma_s is real.

References

[1] BR Desai. Quantum mechanics with basic field theory. Cambridge University Press, 2009.

Posted in Math and Physics Learning. | Tagged: , , , , , , | Leave a Comment »

PHY456H1F: Quantum Mechanics II. Lecture 7 (Taught by Prof J.E. Sipe). Time dependent perturbation

Posted by peeterjoot on October 3, 2011

[Click here for a PDF of this post with nicer formatting (especially if my latex to wordpress script has left FORMULA DOES NOT PARSE errors.)]

Recap: Interaction picture

We’ll use the interaction picture to examine time dependent perturbations. We wrote our Schr\”{o}dinger ket in terms of the interaction ket

\begin{aligned}{\lvert {\psi} \rangle}= e^{-i H_0 (t - t_0)/\hbar}{\lvert {\psi_I(t)} \rangle},\end{aligned} \hspace{\stretch{1}}(1.1)

where

\begin{aligned}{\lvert {\psi_I} \rangle}= U_I(t, t_0) {\lvert {\psi_I(t_0)} \rangle}.\end{aligned} \hspace{\stretch{1}}(1.2)

Our dynamics is given by the operator equation

\begin{aligned}i \hbar \frac{d{{}}}{dt} U_I(t, t_0) = \bar{H}'(t) U_I(t, t_0),\end{aligned} \hspace{\stretch{1}}(1.3)

where

\begin{aligned}\bar{H}'(t) =e^{\frac{i}{\hbar} H_0(t - t_0)} H'(t) e^{-\frac{i}{\hbar} H_0(t - t_0)}.\end{aligned} \hspace{\stretch{1}}(1.4)

We can formally solve 1.3 by writing

\begin{aligned}U_I(t, t_0) = I - \frac{i}{\hbar} \int_{t_0}^t dt' \bar{H}'(t') U_I(t', t_0).\end{aligned} \hspace{\stretch{1}}(1.5)

This is easy enough to verify by direct differentiation

\begin{aligned}i \hbar \frac{d{{}}}{dt} U_I&=\left(\int_{t_0}^t dt' \bar{H}'(t') U_I(t', t_0) \right)' \\ &=\bar{H}'(t) U_I(t, t_0) \frac{dt}{dt}-\bar{H}'(t) U_I(t, t_0) \frac{dt_0}{dt} \\ &=\bar{H}'(t) U_I(t, t_0)\end{aligned}

This is a bit of a chicken and an egg expression, since it is cyclic with a dependency on unknown U_I(t', t_0) factors.

We start with an initial estimate of the operator to be determined, and iterate. This can seem like an odd thing to do, but one can find books on just this integral kernel iteration method (like the nice little Dover book [1] that has sat on my (Peeter’s) shelf all lonely so many years).

Suppose for t near t_0, try

\begin{aligned}U_I(t, t_0) \approx I - \frac{i}{\hbar} \int_{t_0}^t dt' \bar{H}'(t').\end{aligned} \hspace{\stretch{1}}(1.6)

A second order iteration is now possible

\begin{aligned}\begin{aligned}U_I(t, t_0)&\approx I - \frac{i}{\hbar} \int_{t_0}^t dt' \bar{H}'(t') \left(I - \frac{i}{\hbar} \int_{t_0}^{t'} dt'' \bar{H}'(t'').\right) \\ &=I - \frac{i}{\hbar} \int_{t_0}^t dt' \bar{H}'(t') + \left(\frac{-i}{\hbar}\right)^2\int_{t_0}^t dt' \bar{H}'(t') \int_{t_0}^{t'} dt'' \bar{H}'(t'')\end{aligned}\end{aligned} \hspace{\stretch{1}}(1.7)

It is possible to continue this iteration, and this approach is considered in some detail in section 3.3 of the text [2], and is apparently also the basis for Feynman diagrams.

Time dependent perturbation theory.

As covered in section 17 of the text, we’ll split the interaction into time independent and time dependent terms

\begin{aligned}H(t) = H_0 + H'(t),\end{aligned} \hspace{\stretch{1}}(2.8)

and work in the interaction picture with

\begin{aligned}{\lvert {\psi_I(t)} \rangle} = \sum_n \tilde{c}_n(t) {\lvert {\psi_n^{(0)} } \rangle}.\end{aligned} \hspace{\stretch{1}}(2.9)

Our Schr\”{o}dinger ket is then

\begin{aligned}\begin{aligned}{\lvert {\psi(t} \rangle}&=e^{-i H_0^{(0)}(t- t_0)/\hbar}{\lvert {\psi_I(t_0) } \rangle} \\ &=\sum_n \tilde{c}_n(t)e^{-i E_n^{(0)}(t- t_0)/\hbar}{\lvert {\psi_n^{(0)} } \rangle}.\end{aligned}\end{aligned} \hspace{\stretch{1}}(2.10)

With a definition

\begin{aligned}c_n(t) = \tilde{c}_n(t) e^{i E_n t_0/\hbar},\end{aligned} \hspace{\stretch{1}}(2.11)

(where we leave off the zero superscript for the unperturbed state), our time evolved ket becomes

\begin{aligned}{\lvert {\psi(t} \rangle}=\sum_n c_n(t)e^{-i E_n t/\hbar}{\lvert {\psi_n^{(0)} } \rangle}.\end{aligned} \hspace{\stretch{1}}(2.12)

We can now plug 2.9 into our evolution equation

\begin{aligned}i\hbar \frac{d{{}}}{dt} {\lvert {\psi_I(t)} \rangle}&=\bar{H}'(t) {\lvert {\psi_I(t)} \rangle} \\ &=e^{\frac{i}{\hbar} H_0(t - t_0)} H'(t) e^{-\frac{i}{\hbar} H_0(t - t_0)}{\lvert {\psi_I(t)} \rangle},\end{aligned}

which gives us

\begin{aligned}i \hbar \sum_p \frac{\partial {}}{\partial {t}}\tilde{c}_p(t) {\lvert {\psi_p^{(0)} } \rangle}=e^{\frac{i}{\hbar} H_0(t - t_0)} H'(t) e^{-\frac{i}{\hbar} H_0(t - t_0)}\sum_n\tilde{c}_n(t) {\lvert {\psi_n^{(0)} } \rangle}.\end{aligned} \hspace{\stretch{1}}(2.13)

We can apply the bra {\langle {\psi_m^{(0)}} \rvert} to this equation, yielding

\begin{aligned}i \hbar \frac{\partial {}}{\partial {t}}\tilde{c}_m(t)=\sum_n\tilde{c}_n(t)e^{\frac{i}{\hbar} E_m(t - t_0)}{\langle {\psi_m^{(0)}} \rvert} H'(t){\lvert {\psi_n^{(0)} } \rangle}e^{-\frac{i}{\hbar} E_n(t - t_0)}.\end{aligned} \hspace{\stretch{1}}(2.14)

With

\begin{aligned}\omega_m &= \frac{E_m}{\hbar} \\ \omega_{mn} &= \omega_m - \omega_n \\ H_{mn}'(t) &= {\langle {\psi_m^{(0)}} \rvert} H'(t) {\lvert {\psi_n^{(0)} } \rangle},\end{aligned} \hspace{\stretch{1}}(2.15)

this is

\begin{aligned}i \hbar \frac{\partial {\tilde{c}_m(t) }}{\partial {t}}=\sum_n\tilde{c}_n(t)e^{\frac{i}{\hbar} \omega_{mn}(t - t_0)}H_{mn}'(t)\end{aligned} \hspace{\stretch{1}}(2.18)

Inverting 2.11 and plugging in

\begin{aligned}\tilde{c}_n(t) = c_n(t) e^{-i \omega_n t_0},\end{aligned} \hspace{\stretch{1}}(2.19)

yields

\begin{aligned}i \hbar \frac{\partial {c_m(t)}}{\partial {t}}e^{-i \omega_m t_0}=\sum_nc_n(t) e^{-i \omega_n t_0}e^{i\omega_{mn}t}e^{-i(\omega_m -\omega_n) t_0}H_{mn}'(t),\end{aligned} \hspace{\stretch{1}}(2.20)

from which we can cancel the exponentials on both sides yielding

\begin{aligned}i \hbar \frac{\partial {c_m(t)}}{\partial {t}}=\sum_nc_n(t)e^{i\omega_{mn}t}H_{mn}'(t)\end{aligned} \hspace{\stretch{1}}(2.21)

We are now left with all of our time dependence nicely separated out, with the coefficients c_n(t) encoding all the non-oscillatory time evolution information

\begin{aligned}H &= H_0 + H'(t) \\ {\lvert {\psi(t)} \rangle} &= \sum_n c_n(t) e^{-i\omega_n t} {\lvert {\psi_n^{(0)}} \rangle} \\ i \hbar \cdot_m &= \sum_n H_{mn}'(t) e^{i \omega_{mn} t} c_n(t)\end{aligned} \hspace{\stretch{1}}(2.22)

Perturbation expansion.

We now introduce our \lambda parametrization

\begin{aligned}H'(t) \rightarrow \lambda H'(t),\end{aligned} \hspace{\stretch{1}}(3.25)

and hope for convergence, or at least something that at least has well defined asymptotic behavior. We have

\begin{aligned}i \hbar \cdot_m = \lambda \sum_n H_{mn}'(t) e^{i \omega_{mn} t} c_n(t),\end{aligned} \hspace{\stretch{1}}(3.26)

and try

\begin{aligned}c_m(t) = c_m^{(0)}(t) + \lambda c_m^{(1)}(t) + \lambda^2 c_m^{(2)}(t) + \cdots\end{aligned} \hspace{\stretch{1}}(3.27)

Plugging in, we have

\begin{aligned}i \hbar\sum_k\lambda^k \cdot_m^{(k)}(t)=\sum_{n,p} H_{mn}'(t) e^{i \omega_{mn} t}\lambda^{p+1} c_n^{(p)}(t).\end{aligned} \hspace{\stretch{1}}(3.28)

As before, for equality, we treat this as an equation for each \lambda^k. Expanding explicitly for the first few powers, gives us

\begin{aligned}0&= \lambda^0 \left( i \hbar \cdot_m^{(0)}(t) - 0 \right) \\ &+ \lambda^1 \left( i \hbar \cdot_m^{(1)}(t) -\sum_{n} H_{mn}'(t) e^{i \omega_{mn} t}c_n^{(0)}(t)\right) \\ &+ \lambda^2 \left( i \hbar \cdot_m^{(2)}(t) -\sum_{n} H_{mn}'(t) e^{i \omega_{mn} t}c_n^{(1)}(t)\right) \\ &\dot{v}s\end{aligned}

Suppose we have a set of energy levels as depicted in figure (\ref{fig:qmTwoL7fig1})

\begin{figure}[htp]
\centering
\includegraphics[totalheight=0.4\textheight]{qmTwoL7fig1}
\caption{Perturbation around energy level s.}
\end{figure}

With c_n^{(i)} = 0 before the perturbation for all i \ge 1, n and c_m^{(0)} = \delta_{ms}, we can proceed iteratively, solving each equation, starting with

\begin{aligned}i \hbar \cdot_m^{(1)} = H_{ms}'(t) e^{i \omega_{ms} t}\end{aligned} \hspace{\stretch{1}}(3.29)

Example: Slow nucleus passing an atom.

\begin{aligned}H'(t) = - \boldsymbol{\mu} \cdot \mathbf{E}(t)\end{aligned} \hspace{\stretch{1}}(3.35)

with

\begin{aligned}H_{ms}' = -\boldsymbol{\mu}_{ms} \cdot \mathbf{E}(t),\end{aligned} \hspace{\stretch{1}}(3.36)

where

\begin{aligned}\boldsymbol{\mu}_{ms} ={\langle {\psi_m^{(0)}} \rvert}\boldsymbol{\mu}{\lvert {\psi_s^{(0)}} \rangle}.\end{aligned} \hspace{\stretch{1}}(3.37)

Using our previous nucleus passing an atom example, as depicted in figure (\ref{fig:qmTwoL7fig2})

\begin{figure}[htp]
\centering
\includegraphics[totalheight=0.4\textheight]{qmTwoL7fig2}
\caption{Slow nucleus passing an atom.}
\end{figure}

We have

\begin{aligned}\boldsymbol{\mu} = \sum_i q_i \mathbf{R}_i,\end{aligned} \hspace{\stretch{1}}(3.38)

the dipole moment for each of the charges in the atom. We will have fields as depicted in figure (\ref{fig:qmTwoL7fig3})

\begin{figure}[htp]
\centering
\includegraphics[totalheight=0.4\textheight]{qmTwoL7fig3}
\caption{Fields for nucleus atom example.}
\end{figure}

FIXME: think through.

Example: Electromagnetic wave pulse interacting with an atom.

Consider a EM wave pulse, perhaps Gaussian, of the form depicted in figure (\ref{fig:qmTwoL7fig4})

\begin{figure}[htp]
\centering
\includegraphics[totalheight=0.4\textheight]{qmTwoL7fig4}
\caption{Atom interacting with an EM pulse.}
\end{figure}

\begin{aligned}E_y(t) = e^{-t^2/T^2} \cos(\omega_0 t).\end{aligned} \hspace{\stretch{1}}(3.39)

As we learned very early, perhaps sitting on our mother’s knee, we can solve the differential equation 3.29 for the first order perturbation, by direct integration

\begin{aligned}c_m^{(1)}(t) =\frac{1}{{i \hbar}} \int_{-\infty}^tH_{ms}'(t') e^{i \omega_{ms} t'} dt'.\end{aligned} \hspace{\stretch{1}}(3.35)

Here the perturbation is assumed equal to zero at -\infty. Suppose our electric field is specified in terms of a Fourier transform

\begin{aligned}\mathbf{E}(t) = \int_{-\infty}^\infty \frac{d \omega}{2\pi} \mathbf{E}(\omega) e^{-i \omega t},\end{aligned} \hspace{\stretch{1}}(3.36)

so

\begin{aligned}c_m^{(1)}(t) =\frac{\boldsymbol{\mu}_{ms}}{2 \pi i \hbar} \cdot\int_{-\infty}^\infty \int_{-\infty}^t\mathbf{E}(\omega)e^{i (\omega_{ms} -\omega) t'} dt' d\omega.\end{aligned} \hspace{\stretch{1}}(3.37)

From this, “after the perturbation”, as t \rightarrow \infty we find

\begin{aligned}c_m^{(1)}(\infty)&=\frac{\boldsymbol{\mu}_{ms}}{2 \pi i \hbar} \cdot\int_{-\infty}^\infty \int_{-\infty}^\infty \mathbf{E}(\omega)e^{i (\omega_{ms} -\omega) t'} dt' d\omega \\ &=\frac{\boldsymbol{\mu}_{ms}}{i \hbar} \cdot\int_{-\infty}^\infty \mathbf{E}(\omega)\delta(\omega_{ms} - \omega)d\omega\end{aligned}

since we identify

\begin{aligned}\frac{1}{{2 \pi}}\int_{-\infty}^\infty e^{i (\omega_{ms} -\omega) t'} dt' \equiv \delta(\omega_{ms} - \omega)\end{aligned} \hspace{\stretch{1}}(3.38)

Thus the steady state first order perturbation coefficient is

\begin{aligned}c_m^{(1)}(\infty)=\frac{\boldsymbol{\mu}_{ms}}{i \hbar} \cdot\mathbf{E}(\omega_{ms}).\end{aligned} \hspace{\stretch{1}}(3.39)

Frequency symmetry for the Fourier spectrum of a real field.

We will look further at this next week, but we first require an intermediate result from transform theory. Because our field is real, we have

\begin{aligned}\mathbf{E}^{*}(t) = \mathbf{E}(t)\end{aligned} \hspace{\stretch{1}}(3.40)

so

\begin{aligned}\mathbf{E}^{*}(t)&= \int \frac{d\omega}{2 \pi} \mathbf{E}^{*}(\omega) e^{i \omega t} \\ &= \int \frac{d\omega}{2 \pi} \mathbf{E}^{*}(-\omega) e^{-i \omega t} \\ \end{aligned}

and thus

\begin{aligned}\mathbf{E}(\omega) = \mathbf{E}^{*}(-\omega),\end{aligned} \hspace{\stretch{1}}(3.41)

and

\begin{aligned}{\left\lvert{\mathbf{E}(\omega)}\right\rvert}^2 = {\left\lvert{\mathbf{E}(-\omega)}\right\rvert}^2.\end{aligned} \hspace{\stretch{1}}(3.42)

We will see shortly what the point of this aside is.

References

[1] F.G. Tricomi. Integral equations. Dover Pubns, 1985.

[2] BR Desai. Quantum mechanics with basic field theory. Cambridge University Press, 2009.

Posted in Math and Physics Learning. | Tagged: , , , | Leave a Comment »