Peeter Joot's (OLD) Blog.

Math, physics, perl, and programming obscurity.

Posts Tagged ‘thermodynamic identity’

An updated compilation of notes, for ‘PHY452H1S Basic Statistical Mechanics’, Taught by Prof. Arun Paramekanti

Posted by peeterjoot on March 27, 2013

Here’s my second update of my notes compilation for this course, including all of the following:

March 27, 2013 Fermi gas

March 26, 2013 Fermi gas thermodynamics

March 26, 2013 Fermi gas thermodynamics

March 23, 2013 Relativisitic generalization of statistical mechanics

March 21, 2013 Kittel Zipper problem

March 18, 2013 Pathria chapter 4 diatomic molecule problem

March 17, 2013 Gibbs sum for a two level system

March 16, 2013 open system variance of N

March 16, 2013 probability forms of entropy

March 14, 2013 Grand Canonical/Fermion-Bosons

March 13, 2013 Quantum anharmonic oscillator

March 12, 2013 Grand canonical ensemble

March 11, 2013 Heat capacity of perturbed harmonic oscillator

March 10, 2013 Langevin small approximation

March 10, 2013 Addition of two one half spins

March 10, 2013 Midterm II reflection

March 07, 2013 Thermodynamic identities

March 06, 2013 Temperature

March 05, 2013 Interacting spin

plus everything detailed in the description of my first update and before.

Posted in Math and Physics Learning. | Tagged: , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , | 1 Comment »

Thermodynamic identities

Posted by peeterjoot on March 7, 2013

[Click here for a PDF of this post with nicer formatting (especially if my latex to wordpress script has left FORMULA DOES NOT PARSE errors.)]

Impressed with the clarity of Baez’s entropic force discussion on differential forms [1], let’s use that methodology to find all the possible identities that we can get from the thermodynamic identity (for now assuming N is fixed, ignoring the chemical potential.)

This isn’t actually that much work to do, since a bit of editor regular expression magic can do most of the work.

Our starting point is the thermodynamic identity

\begin{aligned}dU = d Q + d W = T dS - P dV,\end{aligned} \hspace{\stretch{1}}(1.0.1)

or

\begin{aligned}0 = dU - T dS + P dV.\end{aligned} \hspace{\stretch{1}}(1.0.2)

It’s quite likely that many of the identities that can be obtained will be useful, but this should at least provide a handy reference of possible conversions.

Differentials in P, V

This first case illustrates the method.

\begin{aligned}0 &= dU - T dS + P dV \\ &= \left( \frac{\partial {U}}{\partial {P}} \right)_{V} dP +\left( \frac{\partial {U}}{\partial {V}} \right)_{P} dV- T\left(  \left( \frac{\partial {S}}{\partial {P}} \right)_{V} dP + \left( \frac{\partial {S}}{\partial {V}} \right)_{P} dV  \right)+ P dV \\ &= dP \left(  \left( \frac{\partial {U}}{\partial {P}} \right)_{V} - T \left( \frac{\partial {S}}{\partial {P}} \right)_{V}  \right)+dV \left(  \left( \frac{\partial {U}}{\partial {V}} \right)_{P} - T \left( \frac{\partial {S}}{\partial {V}} \right)_{P} + P  \right).\end{aligned} \hspace{\stretch{1}}(1.0.3)

Taking wedge products with dV and dP respectively, we form two two forms

\begin{aligned}0 = dP \wedge dV \left(  \left( \frac{\partial {U}}{\partial {P}} \right)_{V} - T \left( \frac{\partial {S}}{\partial {P}} \right)_{V}  \right)\end{aligned} \hspace{\stretch{1}}(1.0.4a)

\begin{aligned}0 = dV \wedge dP \left(  \left( \frac{\partial {U}}{\partial {V}} \right)_{P} - T \left( \frac{\partial {S}}{\partial {V}} \right)_{P} + P  \right).\end{aligned} \hspace{\stretch{1}}(1.0.4b)

Since these must both be zero we find

\begin{aligned}\left( \frac{\partial {U}}{\partial {P}} \right)_{V} = T \left( \frac{\partial {S}}{\partial {P}} \right)_{V}\end{aligned} \hspace{\stretch{1}}(1.0.5a)

\begin{aligned}P =-\left( \frac{\partial {U}}{\partial {V}} \right)_{P}- T \left( \frac{\partial {S}}{\partial {V}} \right)_{P}.\end{aligned} \hspace{\stretch{1}}(1.0.5b)

Differentials in P, T

\begin{aligned}0 &= dU - T dS + P dV \\ &= \left( \frac{\partial {U}}{\partial {P}} \right)_{T} dP + \left( \frac{\partial {U}}{\partial {T}} \right)_{P} dT-T \left(  \left( \frac{\partial {S}}{\partial {P}} \right)_{T} dP + \left( \frac{\partial {S}}{\partial {T}} \right)_{P} dT  \right)+\left( \frac{\partial {V}}{\partial {P}} \right)_{T} dP + \left( \frac{\partial {V}}{\partial {T}} \right)_{P} dT,\end{aligned} \hspace{\stretch{1}}(1.0.6)

or

\begin{aligned}0 = \left( \frac{\partial {U}}{\partial {P}} \right)_{T} -T \left( \frac{\partial {S}}{\partial {P}} \right)_{T} + \left( \frac{\partial {V}}{\partial {P}} \right)_{T}\end{aligned} \hspace{\stretch{1}}(1.0.7a)

\begin{aligned}0 = \left( \frac{\partial {U}}{\partial {T}} \right)_{P} -T \left( \frac{\partial {S}}{\partial {T}} \right)_{P} + \left( \frac{\partial {V}}{\partial {T}} \right)_{P}.\end{aligned} \hspace{\stretch{1}}(1.0.7b)

Differentials in P, S

\begin{aligned}0 &= dU - T dS + P dV \\ &= \left( \frac{\partial {U}}{\partial {P}} \right)_{S} dP + \left( \frac{\partial {U}}{\partial {S}} \right)_{P} dS- T dS+ P \left(  \left( \frac{\partial {V}}{\partial {P}} \right)_{S} dP + \left( \frac{\partial {V}}{\partial {S}} \right)_{P} dS  \right),\end{aligned} \hspace{\stretch{1}}(1.0.8)

or

\begin{aligned}\left( \frac{\partial {U}}{\partial {P}} \right)_{S} = -P \left( \frac{\partial {V}}{\partial {P}} \right)_{S}\end{aligned} \hspace{\stretch{1}}(1.0.9a)

\begin{aligned}T = \left( \frac{\partial {U}}{\partial {S}} \right)_{P} + P \left( \frac{\partial {V}}{\partial {S}} \right)_{P}.\end{aligned} \hspace{\stretch{1}}(1.0.9b)

Differentials in P, U

\begin{aligned}0 &= dU - T dS + P dV \\ &= dU - T \left(  \left( \frac{\partial {S}}{\partial {P}} \right)_{U} dP + \left( \frac{\partial {S}}{\partial {U}} \right)_{P} dU  \right)+ P\left(  \left( \frac{\partial {V}}{\partial {P}} \right)_{U} dP + \left( \frac{\partial {V}}{\partial {U}} \right)_{P} dU  \right),\end{aligned} \hspace{\stretch{1}}(1.0.10)

or

\begin{aligned}0 = 1 - T \left( \frac{\partial {S}}{\partial {U}} \right)_{P} + P \left( \frac{\partial {V}}{\partial {U}} \right)_{P} \end{aligned} \hspace{\stretch{1}}(1.0.11a)

\begin{aligned}T \left( \frac{\partial {S}}{\partial {P}} \right)_{U} = P \left( \frac{\partial {V}}{\partial {P}} \right)_{U}.\end{aligned} \hspace{\stretch{1}}(1.0.11b)

Differentials in V, T

\begin{aligned}0 &= dU - T dS + P dV \\ &= \left( \frac{\partial {U}}{\partial {V}} \right)_{T} dV + \left( \frac{\partial {U}}{\partial {T}} \right)_{V} dT - T \left(  \left( \frac{\partial {S}}{\partial {V}} \right)_{T} dV + \left( \frac{\partial {S}}{\partial {T}} \right)_{V} dT  \right)+ P dV,\end{aligned} \hspace{\stretch{1}}(1.0.12)

or

\begin{aligned}0 = \left( \frac{\partial {U}}{\partial {V}} \right)_{T} - T \left( \frac{\partial {S}}{\partial {V}} \right)_{T} + P \end{aligned} \hspace{\stretch{1}}(1.0.13a)

\begin{aligned}\left( \frac{\partial {U}}{\partial {T}} \right)_{V} = T \left( \frac{\partial {S}}{\partial {T}} \right)_{V}.\end{aligned} \hspace{\stretch{1}}(1.0.13b)

Differentials in V, S

\begin{aligned}0 &= dU - T dS + P dV \\ &= \left( \frac{\partial {U}}{\partial {V}} \right)_{S} dV + \left( \frac{\partial {U}}{\partial {S}} \right)_{V} dS - T dS+ P dV,\end{aligned} \hspace{\stretch{1}}(1.0.14)

or

\begin{aligned}P = -\left( \frac{\partial {U}}{\partial {V}} \right)_{S}\end{aligned} \hspace{\stretch{1}}(1.0.15a)

\begin{aligned}T = \left( \frac{\partial {U}}{\partial {S}} \right)_{V} .\end{aligned} \hspace{\stretch{1}}(1.0.15b)

Differentials in V, U

\begin{aligned}0 &= dU - T dS + P dV \\ &= dU- T \left(  \left( \frac{\partial {S}}{\partial {V}} \right)_{U} dV + \left( \frac{\partial {S}}{\partial {U}} \right)_{V} dU  \right)+ P \left(  \left( \frac{\partial {V}}{\partial {V}} \right)_{U} dV + \left( \frac{\partial {V}}{\partial {U}} \right)_{V} dU  \right)\end{aligned} \hspace{\stretch{1}}(1.0.16)

or

\begin{aligned}0 = 1 - T \left( \frac{\partial {S}}{\partial {U}} \right)_{V} + P \left( \frac{\partial {V}}{\partial {U}} \right)_{V} \end{aligned} \hspace{\stretch{1}}(1.0.17a)

\begin{aligned}T \left( \frac{\partial {S}}{\partial {V}} \right)_{U} = P \left( \frac{\partial {V}}{\partial {V}} \right)_{U}.\end{aligned} \hspace{\stretch{1}}(1.0.17b)

Differentials in S, T

\begin{aligned}0 &= dU - T dS + P dV \\ &= \left(  \left( \frac{\partial {U}}{\partial {S}} \right)_{T} dS + \left( \frac{\partial {U}}{\partial {T}} \right)_{S} dT  \right)- T dS+ P \left(  \left( \frac{\partial {V}}{\partial {S}} \right)_{T} dS + \left( \frac{\partial {V}}{\partial {T}} \right)_{S} dT  \right),\end{aligned} \hspace{\stretch{1}}(1.0.18)

or

\begin{aligned}0 = \left( \frac{\partial {U}}{\partial {S}} \right)_{T} - T + P \left( \frac{\partial {V}}{\partial {S}} \right)_{T} \end{aligned} \hspace{\stretch{1}}(1.0.19a)

\begin{aligned}0 = \left( \frac{\partial {U}}{\partial {T}} \right)_{S} + P \left( \frac{\partial {V}}{\partial {T}} \right)_{S}.\end{aligned} \hspace{\stretch{1}}(1.0.19b)

Differentials in S, U

\begin{aligned}0 &= dU - T dS + P dV \\ &= dU - T dS+ P \left(  \left( \frac{\partial {V}}{\partial {S}} \right)_{U} dS + \left( \frac{\partial {V}}{\partial {U}} \right)_{S} dU  \right)\end{aligned} \hspace{\stretch{1}}(1.0.20)

or

\begin{aligned}\frac{1}{{P}} = - \left( \frac{\partial {V}}{\partial {U}} \right)_{S} \end{aligned} \hspace{\stretch{1}}(1.0.21a)

\begin{aligned}T = P \left( \frac{\partial {V}}{\partial {S}} \right)_{U}.\end{aligned} \hspace{\stretch{1}}(1.0.21b)

Differentials in T, U

\begin{aligned}0 &= dU - T dS + P dV \\ &= dU - T \left(  \left( \frac{\partial {S}}{\partial {T}} \right)_{U} dT + \left( \frac{\partial {S}}{\partial {U}} \right)_{T} dU  \right)+ P\left(  \left( \frac{\partial {V}}{\partial {T}} \right)_{U} dT + \left( \frac{\partial {V}}{\partial {U}} \right)_{T} dU  \right),\end{aligned} \hspace{\stretch{1}}(1.0.22)

or

\begin{aligned}0 = 1 - T \left( \frac{\partial {S}}{\partial {U}} \right)_{T} + P \left( \frac{\partial {V}}{\partial {U}} \right)_{T} \end{aligned} \hspace{\stretch{1}}(1.0.23a)

\begin{aligned}T \left( \frac{\partial {S}}{\partial {T}} \right)_{U} = P \left( \frac{\partial {V}}{\partial {T}} \right)_{U}.\end{aligned} \hspace{\stretch{1}}(1.0.23b)

References

[1] John Baez. Entropic forces, 2012. URL http://johncarlosbaez.wordpress.com/2012/02/01/entropic-forces/. [Online; accessed 07-March-2013].

Posted in Math and Physics Learning. | Tagged: , , , , , , , , , , , | Leave a Comment »