Here is what will likely be the final update of my class notes from Winter 2013, University of Toronto Condensed Matter Physics course (PHY487H1F), taught by Prof. Stephen Julian.

Official course description: “Introduction to the concepts used in the modern treatment of solids. The student is assumed to be familiar with elementary quantum mechanics. Topics include: bonding in solids, crystal structures, lattice vibrations, free electron model of metals, band structure, thermal properties, magnetism and superconductivity (time permitting)”

This document contains:

• Plain old lecture notes. These mirror what was covered in class, possibly augmented with additional details.

• Personal notes exploring details that were not clear to me from the lectures, or from the texts associated with the lecture material.

• Assigned problems. Like anything else take these as is.

• Some worked problems attempted as course prep, for fun, or for test preparation, or post test reflection.

• Links to Mathematica workbooks associated with this course.

My thanks go to Professor Julian for teaching this course.

NOTE: This v.5 update of these notes is still really big (~18M). Some of my mathematica generated 3D images result in very large pdfs.

Changelog for this update (relative to the first, and second, and third, and the last pre-exam Changelogs).

January 19, 2014 Quadratic Deybe

January 19, 2014 One atom basis phonons in 2D

January 07, 2014 Two body harmonic oscillator in 3D

Figure out a general solution for two interacting harmonic oscillators, then use the result to calculate the matrix required for a 2D two atom diamond lattice with horizontal, vertical and diagonal nearest neighbour coupling.

December 04, 2013 Lecture 24: Superconductivity (cont.)

December 04, 2013 Problem Set 10: Drude conductivity and doped semiconductors.