Peeter Joot's (OLD) Blog.

Math, physics, perl, and programming obscurity.

Posts Tagged ‘four vector’

An updated compilation of notes, for ‘PHY452H1S Basic Statistical Mechanics’, Taught by Prof. Arun Paramekanti

Posted by peeterjoot on March 27, 2013

Here’s my second update of my notes compilation for this course, including all of the following:

March 27, 2013 Fermi gas

March 26, 2013 Fermi gas thermodynamics

March 26, 2013 Fermi gas thermodynamics

March 23, 2013 Relativisitic generalization of statistical mechanics

March 21, 2013 Kittel Zipper problem

March 18, 2013 Pathria chapter 4 diatomic molecule problem

March 17, 2013 Gibbs sum for a two level system

March 16, 2013 open system variance of N

March 16, 2013 probability forms of entropy

March 14, 2013 Grand Canonical/Fermion-Bosons

March 13, 2013 Quantum anharmonic oscillator

March 12, 2013 Grand canonical ensemble

March 11, 2013 Heat capacity of perturbed harmonic oscillator

March 10, 2013 Langevin small approximation

March 10, 2013 Addition of two one half spins

March 10, 2013 Midterm II reflection

March 07, 2013 Thermodynamic identities

March 06, 2013 Temperature

March 05, 2013 Interacting spin

plus everything detailed in the description of my first update and before.

Advertisements

Posted in Math and Physics Learning. | Tagged: , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , | 1 Comment »

Relativistic generalization of statistical mechanics

Posted by peeterjoot on March 22, 2013

[Click here for a PDF of this post with nicer formatting (especially if my latex to wordpress script has left FORMULA DOES NOT PARSE errors.)]

Motivation

I was wondering how to generalize the arguments of [1] to relativistic systems. Here’s a bit of blundering through the non-relativistic arguments of that text, tweaking them slightly.

I’m sure this has all been done before, but was a useful exercise to understand the non-relativistic arguments of Pathria better.

Generalizing from energy to four momentum

Generalizing the arguments of section 1.1.

Instead of considering that the total energy of the system is fixed, it makes sense that we’d have to instead consider the total four-momentum of the system fixed, so if we have N particles, we have a total four momentum

\begin{aligned}P = \sum_i n_i P_i = \sum n_i \left( \epsilon_i/c, \mathbf{p}_i \right),\end{aligned} \hspace{\stretch{1}}(1.2.1)

where n_i is the total number of particles with four momentum P_i. We can probably expect that the n_i‘s in this relativistic system will be smaller than those in a non-relativistic system since we have many more states when considering that we can have both specific energies and specific momentum, and the combinatorics of those extra degrees of freedom. However, we’ll still have

\begin{aligned}N = \sum_i n_i.\end{aligned} \hspace{\stretch{1}}(1.2.2)

Only given a specific observer frame can these these four-momentum components \left( \epsilon_i/c, \mathbf{p}_i \right) be expressed explicitly, as in

\begin{aligned}\epsilon_i = \gamma_i m_i c^2\end{aligned} \hspace{\stretch{1}}(1.0.3a)

\begin{aligned}\mathbf{p}_i = \gamma_i m \mathbf{v}_i\end{aligned} \hspace{\stretch{1}}(1.0.3b)

\begin{aligned}\gamma_i = \frac{1}{{\sqrt{1 - \mathbf{v}_i^2/c^2}}},\end{aligned} \hspace{\stretch{1}}(1.0.3c)

where \mathbf{v}_i is the velocity of the particle in that observer frame.

Generalizing the number if microstates, and notion of thermodynamic equilibrium

Generalizing the arguments of section 1.2.

We can still count the number of all possible microstates, but that number, denoted \Omega(N, V, E), for a given total energy needs to be parameterized differently. First off, any given volume is observer dependent, so we likely need to map

\begin{aligned}V \rightarrow \int d^4 x = \int dx^0 \wedge dx^1 \wedge dx^2 \wedge dx^3.\end{aligned} \hspace{\stretch{1}}(1.0.4)

Let’s still call this V, but know that we mean this to be four volume element, bounded in both space and time, referred to a fixed observer’s frame. So, lets write the total number of microstates as

\begin{aligned}\Omega(N, V, P) = \Omega \left( N, \int d^4 x, E/c, P^1, P^2, P^3 \right),\end{aligned} \hspace{\stretch{1}}(1.0.5)

where P = ( E/c, \mathbf{P} ) is the total four momentum of the system. If we have a system subdivided into to two systems in contact as in fig. 1.1, where the two systems have total four momentum P_1 and P_2 respectively.

Fig 1.1: Two physical systems in thermal contact

 

In the text the total energy of both systems was written

\begin{aligned}E^{(0)} = E_1 + E_2,\end{aligned} \hspace{\stretch{1}}(1.0.6)

so we’ll write

\begin{aligned}{P^{(0)}}^\mu = P_1^\mu + P_2^\mu = \text{constant},\end{aligned} \hspace{\stretch{1}}(1.0.7)

so that the total number of microstates of the combined system is now

\begin{aligned}\Omega^{(0)}(P_1, P_2) = \Omega_1(P_1) \Omega_2(P_2).\end{aligned} \hspace{\stretch{1}}(1.0.8)

As before, if \bar{{P}}^\mu_i denotes an equilibrium value of P_i^\mu, then maximizing eq. 1.0.8 requires all the derivatives (no sum over \mu here)

\begin{aligned}\left({\partial {\Omega_1(P_1)}}/{\partial {P^\mu_1}}\right)_{{P_1 = \bar{{P_1}}}}\Omega_2(\bar{{P}}_2)+\Omega_1(\bar{{P}}_1)\left({\partial {\Omega_2(P_2)}}/{\partial {P^\mu}}\right)_{{P_2 = \bar{{P_2}}}}\times\frac{\partial {P_2^\mu}}{\partial {P_1^\mu}}= 0.\end{aligned} \hspace{\stretch{1}}(1.0.9)

With each of the components of the total four-momentum P^\mu_1 + P^\mu_2 separately constant, we have {\partial {P_2^\mu}}/{\partial {P_1^\mu}} = -1, so that we have

\begin{aligned}\left({\partial {\ln \Omega_1(P_1)}}/{\partial {P^\mu_1}}\right)_{{P_1 = \bar{{P_1}}}}=\left({\partial {\ln \Omega_2(P_2)}}/{\partial {P^\mu}}\right)_{{P_2 = \bar{{P_2}}}},\end{aligned} \hspace{\stretch{1}}(1.0.10)

as before. However, we now have one such identity for each component of the total four momentum P which has been held constant. Let’s now define

\begin{aligned}\beta_\mu \equiv \left({\partial {\ln \Omega(N, V, P)}}/{\partial {P^\mu}}\right)_{{N, V, P = \bar{{P}}}},\end{aligned} \hspace{\stretch{1}}(1.0.11)

Our old scalar temperature is then

\begin{aligned}\beta_0 = c \left({\partial {\ln \Omega(N, V, P)}}/{\partial {E}}\right)_{{N, V, P = \bar{{P}}}} = c \beta = \frac{c}{k_{\mathrm{B}} T},\end{aligned} \hspace{\stretch{1}}(1.0.12)

but now we have three additional such constants to figure out what to do with. A first start would be figuring out how the Boltzmann probabilities should be generalized.

Equilibrium between a system and a heat reservoir

Generalizing the arguments of section 3.1.

As in the text, let’s consider a very large heat reservoir A' and a subsystem A as in fig. 1.2 that has come to a state of mutual equilibrium. This likely needs to be defined as a state in which the four vector \beta_\mu is common, as opposed to just \beta_0 the temperature field being common.

Fig 1.2: A system A immersed in heat reservoir A’

 

If the four momentum of the heat reservoir is P_r' with P_r for the subsystem, and

\begin{aligned}P_r + P_r' = P^{(0)} = \text{constant}.\end{aligned} \hspace{\stretch{1}}(1.0.13)

Writing

\begin{aligned}\Omega'({P^\mu_r}') = \Omega'(P^{(0)} - {P^\mu_r}) \propto P_r,\end{aligned} \hspace{\stretch{1}}(1.0.14)

for the number of microstates in the reservoir, so that a Taylor expansion of the logarithm around P_r' = P^{(0)} (with sums implied) is

\begin{aligned}\ln \Omega'({P^\mu_r}') = \ln \Omega'({P^{(0)}}) +\left({\partial {\ln \Omega'}}/{\partial {{P^\mu}'}}\right)_{{P' = P^{(0)}}} \left( P^{(0)} - P^\mu \right)\approx\text{constant} - \beta_\mu' P^\mu.\end{aligned} \hspace{\stretch{1}}(1.0.15)

Here we’ve inserted the definition of \beta^\mu from eq. 1.0.11, so that at equilibrium, with \beta_\mu' = \beta_\mu, we obtain

\begin{aligned}\Omega'({P^\mu_r}') = \exp\left( - \beta_\mu P^\mu \right)=\exp\left( - \beta E \right)\exp\left( - \beta_1 P^1 \right)\exp\left( - \beta_2 P^3 \right)\exp\left( - \beta_3 P^3 \right).\end{aligned} \hspace{\stretch{1}}(1.0.16)

Next steps

This looks consistent with the outline provided in http://physics.stackexchange.com/a/4950/3621 by Lubos to the stackexchange “is there a relativistic quantum thermodynamics” question. I’m sure it wouldn’t be too hard to find references that explore this, as well as explain why non-relativistic stat mech can be used for photon problems. Further exploration of this should wait until after the studies for this course are done.

References

[1] RK Pathria. Statistical mechanics. Butterworth Heinemann, Oxford, UK, 1996.

Posted in Math and Physics Learning. | Tagged: , , , , , , , , , , , , , | Leave a Comment »

PHY450H1S (relativistic electrodynamics) Problem Set 3.

Posted by peeterjoot on March 2, 2011

[Click here for a PDF of this post with nicer formatting]

Disclaimer.

This problem set is as yet ungraded (although only the second question will be graded).

Problem 1. Fun with \epsilon_{\alpha\beta\gamma}, \epsilon^{ijkl}, F_{ij}, and the duality of Maxwell’s equations in vacuum.

1. Statement. rank 3 spatial antisymmetric tensor identities.

Prove that

\begin{aligned}\epsilon_{\alpha \beta \gamma}\epsilon_{\mu \nu \gamma}=\delta_{\alpha\mu} \delta_{\beta\nu}-\delta_{\alpha\nu} \delta_{\beta\mu}\end{aligned} \hspace{\stretch{1}}(2.1)

and use it to find the familiar relation for

\begin{aligned}(\mathbf{A} \times \mathbf{B}) \cdot (\mathbf{C} \times \mathbf{D})\end{aligned} \hspace{\stretch{1}}(2.2)

Also show that

\begin{aligned}\epsilon_{\alpha \beta \gamma}\epsilon_{\mu \beta \gamma}=2 \delta_{\alpha\mu}.\end{aligned} \hspace{\stretch{1}}(2.3)

(Einstein summation implied all throughout this problem).

1. Solution

We can explicitly expand the (implied) sum over indexes \gamma. This is

\begin{aligned}\epsilon_{\alpha \beta \gamma}\epsilon_{\mu \nu \gamma}=\epsilon_{\alpha \beta 1} \epsilon_{\mu \nu 1}+\epsilon_{\alpha \beta 2} \epsilon_{\mu \nu 2}+\epsilon_{\alpha \beta 3} \epsilon_{\mu \nu 3}\end{aligned} \hspace{\stretch{1}}(2.4)

For any \alpha \ne \beta only one term is non-zero. For example with \alpha,\beta = 2,3, we have just a contribution from the \gamma = 1 part of the sum

\begin{aligned}\epsilon_{2 3 1} \epsilon_{\mu \nu 1}.\end{aligned} \hspace{\stretch{1}}(2.5)

The value of this for (\mu,\nu) = (\alpha,\beta) is

\begin{aligned}(\epsilon_{2 3 1})^2\end{aligned} \hspace{\stretch{1}}(2.6)

whereas for (\mu,\nu) = (\beta,\alpha) we have

\begin{aligned}-(\epsilon_{2 3 1})^2\end{aligned} \hspace{\stretch{1}}(2.7)

Our sum has value one when (\alpha, \beta) matches (\mu, \nu), and value minus one for when (\mu, \nu) are permuted. We can summarize this, by saying that when \alpha \ne \beta we have

\begin{aligned}\boxed{\epsilon_{\alpha \beta \gamma}\epsilon_{\mu \nu \gamma}=\delta_{\alpha\mu} \delta_{\beta\nu}-\delta_{\alpha\nu} \delta_{\beta\mu}.}\end{aligned} \hspace{\stretch{1}}(2.8)

However, observe that when \alpha = \beta the RHS is

\begin{aligned}\delta_{\alpha\mu} \delta_{\alpha\nu}-\delta_{\alpha\nu} \delta_{\alpha\mu} = 0,\end{aligned} \hspace{\stretch{1}}(2.9)

as desired, so this form works in general without any \alpha \ne \beta qualifier, completing this part of the problem.

\begin{aligned}(\mathbf{A} \times \mathbf{B}) \cdot (\mathbf{C} \times \mathbf{D})&=(\epsilon_{\alpha \beta \gamma} \mathbf{e}^\alpha A^\beta B^\gamma ) \cdot(\epsilon_{\mu \nu \sigma} \mathbf{e}^\mu C^\nu D^\sigma ) \\ &=\epsilon_{\alpha \beta \gamma} A^\beta B^\gamma\epsilon_{\alpha \nu \sigma} C^\nu D^\sigma \\ &=(\delta_{\beta \nu} \delta_{\gamma\sigma}-\delta_{\beta \sigma} \delta_{\gamma\nu} )A^\beta B^\gammaC^\nu D^\sigma \\ &=A^\nu B^\sigmaC^\nu D^\sigma-A^\sigma B^\nuC^\nu D^\sigma.\end{aligned}

This gives us

\begin{aligned}\boxed{(\mathbf{A} \times \mathbf{B}) \cdot (\mathbf{C} \times \mathbf{D})=(\mathbf{A} \cdot \mathbf{C})(\mathbf{B} \cdot \mathbf{D})-(\mathbf{A} \cdot \mathbf{D})(\mathbf{B} \cdot \mathbf{C}).}\end{aligned} \hspace{\stretch{1}}(2.10)

We have one more identity to deal with.

\begin{aligned}\epsilon_{\alpha \beta \gamma}\epsilon_{\mu \beta \gamma}\end{aligned} \hspace{\stretch{1}}(2.11)

We can expand out this (implied) sum slow and dumb as well

\begin{aligned}\epsilon_{\alpha \beta \gamma}\epsilon_{\mu \beta \gamma}&=\epsilon_{\alpha 1 2} \epsilon_{\mu 1 2}+\epsilon_{\alpha 2 1} \epsilon_{\mu 2 1} \\ &+\epsilon_{\alpha 1 3} \epsilon_{\mu 1 3}+\epsilon_{\alpha 3 1} \epsilon_{\mu 3 1} \\ &+\epsilon_{\alpha 2 3} \epsilon_{\mu 2 3}+\epsilon_{\alpha 3 2} \epsilon_{\mu 3 2} \\ &=2 \epsilon_{\alpha 1 2} \epsilon_{\mu 1 2}+ 2 \epsilon_{\alpha 1 3} \epsilon_{\mu 1 3}+ 2 \epsilon_{\alpha 2 3} \epsilon_{\mu 2 3}\end{aligned}

Now, observe that for any \alpha \in (1,2,3) only one term of this sum is picked up. For example, with no loss of generality, pick \alpha = 1. We are left with only

\begin{aligned}2 \epsilon_{1 2 3} \epsilon_{\mu 2 3}\end{aligned} \hspace{\stretch{1}}(2.12)

This has the value

\begin{aligned}2 (\epsilon_{1 2 3})^2 = 2\end{aligned} \hspace{\stretch{1}}(2.13)

when \mu = \alpha and is zero otherwise. We can therefore summarize the evaluation of this sum as

\begin{aligned}\boxed{\epsilon_{\alpha \beta \gamma}\epsilon_{\mu \beta \gamma}=  2\delta_{\alpha\mu},}\end{aligned} \hspace{\stretch{1}}(2.14)

completing this problem.

2. Statement. Determinant of three by three matrix.

Prove that for any 3 \times 3 matrix {\left\lVert{A_{\alpha\beta}}\right\rVert}: \epsilon_{\mu\nu\lambda} A_{\alpha \mu} A_{\beta\nu} A_{\gamma\lambda} = \epsilon_{\alpha \beta \gamma} \text{Det} A and that \epsilon_{\alpha\beta\gamma} \epsilon_{\mu\nu\lambda} A_{\alpha \mu} A_{\beta\nu} A_{\gamma\lambda} = 6 \text{Det} A.

2. Solution

In class Simon showed us how the first identity can be arrived at using the triple product \mathbf{a} \cdot (\mathbf{b} \times \mathbf{c}) = \text{Det}(\mathbf{a} \mathbf{b} \mathbf{c}). It occurred to me later that I’d seen the identity to be proven in the context of Geometric Algebra, but hadn’t recognized it in this tensor form. Basically, a wedge product can be expanded in sums of determinants, and when the dimension of the space is the same as the vector, we have a pseudoscalar times the determinant of the components.

For example, in \mathbb{R}^{2}, let’s take the wedge product of a pair of vectors. As preparation for the relativistic \mathbb{R}^{4} case We won’t require an orthonormal basis, but express the vector in terms of a reciprocal frame and the associated components

\begin{aligned}a = a^i e_i = a_j e^j\end{aligned} \hspace{\stretch{1}}(2.15)

where

\begin{aligned}e^i \cdot e_j = {\delta^i}_j.\end{aligned} \hspace{\stretch{1}}(2.16)

When we get to the relativistic case, we can pick (but don’t have to) the standard basis

\begin{aligned}e_0 &= (1, 0, 0, 0) \\ e_1 &= (0, 1, 0, 0) \\ e_2 &= (0, 0, 1, 0) \\ e_3 &= (0, 0, 0, 1),\end{aligned} \hspace{\stretch{1}}(2.17)

for which our reciprocal frame is implicitly defined by the metric

\begin{aligned}e^0 &= (1, 0, 0, 0) \\ e^1 &= (0, -1, 0, 0) \\ e^2 &= (0, 0, -1, 0) \\ e^3 &= (0, 0, 0, -1).\end{aligned} \hspace{\stretch{1}}(2.21)

Anyways. Back to the problem. Let’s examine the \mathbb{R}^{2} case. Our wedge product in coordinates is

\begin{aligned}a \wedge b=a^i b^j (e_i \wedge e_j)\end{aligned} \hspace{\stretch{1}}(2.25)

Since there are only two basis vectors we have

\begin{aligned}a \wedge b=(a^1 b^2 - a^2 b^1) e_1 \wedge e_2 = \text{Det} {\left\lVert{a^i b^j}\right\rVert} (e_1 \wedge e_2).\end{aligned} \hspace{\stretch{1}}(2.26)

Our wedge product is a product of the determinant of the vector coordinates, times the \mathbb{R}^{2} pseudoscalar e_1 \wedge e_2.

This doesn’t look quite like the \mathbb{R}^{3} relation that we want to prove, which had an antisymmetric tensor factor for the determinant. Observe that we get the determinant by picking off the e_1 \wedge e_2 component of the bivector result (the only component in this case), and we can do that by dotting with e^2 \cdot e^1. To get an antisymmetric tensor times the determinant, we have only to dot with a different pseudoscalar (one that differs by a possible sign due to permutation of the indexes). That is

\begin{aligned}(e^t \wedge e^s) \cdot (a \wedge b)&=a^i b^j (e^t \wedge e^s) \cdot (e_i \wedge e_j) \\ &=a^i b^j\left( {\delta^{s}}_i {\delta^{t}}_j-{\delta^{t}}_i {\delta^{s}}_j  \right) \\ &=a^i b^j{\delta^{[t}}_j {\delta^{s]}}_i \\ &=a^i b^j{\delta^{t}}_{[j} {\delta^{s}}_{i]} \\ &=a^{[i} b^{j]}{\delta^{t}}_{j} {\delta^{s}}_{i} \\ &=a^{[s} b^{t]}\end{aligned}

Now, if we write a^i = A^{1 i} and b^j = A^{2 j} we have

\begin{aligned}(e^t \wedge e^s) \cdot (a \wedge b)=A^{1 s} A^{2 t} -A^{1 t} A^{2 s}\end{aligned} \hspace{\stretch{1}}(2.27)

We can write this in two different ways. One of which is

\begin{aligned}A^{1 s} A^{2 t} -A^{1 t} A^{2 s} =\epsilon^{s t} \text{Det} {\left\lVert{A^{ij}}\right\rVert}\end{aligned} \hspace{\stretch{1}}(2.28)

and the other of which is by introducing free indexes for 1 and 2, and summing antisymmetrically over these. That is

\begin{aligned}A^{1 s} A^{2 t} -A^{1 t} A^{2 s}=A^{a s} A^{b t} \epsilon_{a b}\end{aligned} \hspace{\stretch{1}}(2.29)

So, we have

\begin{aligned}\boxed{A^{a s} A^{b t} \epsilon_{a b} =A^{1 i} A^{2 j} {\delta^{[t}}_j {\delta^{s]}}_i =\epsilon^{s t} \text{Det} {\left\lVert{A^{ij}}\right\rVert},}\end{aligned} \hspace{\stretch{1}}(2.30)

This result hold regardless of the metric for the space, and does not require that we were using an orthonormal basis. When the metric is Euclidean and we have an orthonormal basis, then all the indexes can be dropped.

The \mathbb{R}^{3} and \mathbb{R}^{4} cases follow in exactly the same way, we just need more vectors in the wedge products.

For the \mathbb{R}^{3} case we have

\begin{aligned}(e^u \wedge e^t \wedge e^s) \cdot ( a \wedge b \wedge c)&=a^i b^j c^k(e^u \wedge e^t \wedge e^s) \cdot (e_i \wedge e_j \wedge e_k) \\ &=a^i b^j c^k{\delta^{[u}}_k{\delta^{t}}_j{\delta^{s]}}_i \\ &=a^{[s} b^t c^{u]}\end{aligned}

Again, with a^i = A^{1 i} and b^j = A^{2 j}, and c^k = A^{3 k} we have

\begin{aligned}(e^u \wedge e^t \wedge e^s) \cdot ( a \wedge b \wedge c)=A^{1 i} A^{2 j} A^{3 k}{\delta^{[u}}_k{\delta^{t}}_j{\delta^{s]}}_i\end{aligned} \hspace{\stretch{1}}(2.31)

and we can choose to write this in either form, resulting in the identity

\begin{aligned}\boxed{\epsilon^{s t u} \text{Det} {\left\lVert{A^{ij}}\right\rVert}=A^{1 i} A^{2 j} A^{3 k}{\delta^{[u}}_k{\delta^{t}}_j{\delta^{s]}}_i=\epsilon_{a b c} A^{a s} A^{b t} A^{c u}.}\end{aligned} \hspace{\stretch{1}}(2.32)

The \mathbb{R}^{4} case follows exactly the same way, and we have

\begin{aligned}(e^v \wedge e^u \wedge e^t \wedge e^s) \cdot ( a \wedge b \wedge c \wedge d)&=a^i b^j c^k d^l(e^v \wedge e^u \wedge e^t \wedge e^s) \cdot (e_i \wedge e_j \wedge e_k \wedge e_l) \\ &=a^i b^j c^k d^l{\delta^{[v}}_l{\delta^{u}}_k{\delta^{t}}_j{\delta^{s]}}_i \\ &=a^{[s} b^t c^{u} d^{v]}.\end{aligned}

This time with a^i = A^{0 i} and b^j = A^{1 j}, and c^k = A^{2 k}, and d^l = A^{3 l} we have

\begin{aligned}\boxed{\epsilon^{s t u v} \text{Det} {\left\lVert{A^{ij}}\right\rVert}=A^{0 i} A^{1 j} A^{2 k} A^{3 l}{\delta^{[v}}_l{\delta^{u}}_k{\delta^{t}}_j{\delta^{s]}}_i=\epsilon_{a b c d} A^{a s} A^{b t} A^{c u} A^{d v}.}\end{aligned} \hspace{\stretch{1}}(2.33)

This one is almost the identity to be established later in problem 1.4. We have only to raise and lower some indexes to get that one. Note that in the Minkowski standard basis above, because s, t, u, v must be a permutation of 0,1,2,3 for a non-zero result, we must have

\begin{aligned}\epsilon^{s t u v} = (-1)^3 (+1) \epsilon_{s t u v}.\end{aligned} \hspace{\stretch{1}}(2.34)

So raising and lowering the identity above gives us

\begin{aligned}-\epsilon_{s t u v} \text{Det} {\left\lVert{A_{ij}}\right\rVert}=\epsilon^{a b c d} A_{a s} A_{b t} A_{c u} A_{d u}.\end{aligned} \hspace{\stretch{1}}(2.35)

No sign changes were required for the indexes a, b, c, d, since they are paired.

Until we did the raising and lowering operations here, there was no specific metric required, so our first result 2.33 is the more general one.

There’s one more part to this problem, doing the antisymmetric sums over the indexes s, t, \cdots. For the \mathbb{R}^{2} case we have

\begin{aligned}\epsilon_{s t} \epsilon_{a b} A^{a s} A^{b t}&=\epsilon_{s t} \epsilon^{s t} \text{Det} {\left\lVert{A^{ij}}\right\rVert} \\ &=\left( \epsilon_{1 2} \epsilon^{1 2} +\epsilon_{2 1} \epsilon^{2 1} \right)\text{Det} {\left\lVert{A^{ij}}\right\rVert} \\ &=\left( 1^2 + (-1)^2\right)\text{Det} {\left\lVert{A^{ij}}\right\rVert}\end{aligned}

We conclude that

\begin{aligned}\boxed{\epsilon_{s t} \epsilon_{a b} A^{a s} A^{b t} = 2! \text{Det} {\left\lVert{A^{ij}}\right\rVert}.}\end{aligned} \hspace{\stretch{1}}(2.36)

For the \mathbb{R}^{3} case we have the same operation

\begin{aligned}\epsilon_{s t u} \epsilon_{a b c} A^{a s} A^{b t} A^{c u}&=\epsilon_{s t u} \epsilon^{s t u} \text{Det} {\left\lVert{A^{ij}}\right\rVert} \\ &=\left( \epsilon_{1 2 3} \epsilon^{1 2 3} +\epsilon_{1 3 2} \epsilon^{1 3 2} + \cdots\right)\text{Det} {\left\lVert{A^{ij}}\right\rVert} \\ &=(\pm 1)^2 (3!)\text{Det} {\left\lVert{A^{ij}}\right\rVert}.\end{aligned}

So we conclude

\begin{aligned}\boxed{\epsilon_{s t u} \epsilon_{a b c} A^{a s} A^{b t} A^{c u}= 3! \text{Det} {\left\lVert{A^{ij}}\right\rVert}.}\end{aligned} \hspace{\stretch{1}}(2.37)

It’s clear what the pattern is, and if we evaluate the sum of the antisymmetric tensor squares in \mathbb{R}^{4} we have

\begin{aligned}\epsilon_{s t u v} \epsilon_{s t u v}&=\epsilon_{0 1 2 3} \epsilon_{0 1 2 3}+\epsilon_{0 1 3 2} \epsilon_{0 1 3 2}+\epsilon_{0 2 1 3} \epsilon_{0 2 1 3}+ \cdots \\ &= (\pm 1)^2 (4!),\end{aligned}

So, for our SR case we have

\begin{aligned}\boxed{\epsilon_{s t u v} \epsilon_{a b c d} A^{a s} A^{b t} A^{c u} A^{d v}= 4! \text{Det} {\left\lVert{A^{ij}}\right\rVert}.}\end{aligned} \hspace{\stretch{1}}(2.38)

This was part of question 1.4, albeit in lower index form. Here since all indexes are matched, we have the same result without major change

\begin{aligned}\boxed{\epsilon^{s t u v} \epsilon^{a b c d} A_{a s} A_{b t} A_{c u} A_{d v}= 4! \text{Det} {\left\lVert{A_{ij}}\right\rVert}.}\end{aligned} \hspace{\stretch{1}}(2.39)

The main difference is that we are now taking the determinant of a lower index tensor.

3. Statement. Rotational invariance of 3D antisymmetric tensor

Use the previous results to show that \epsilon_{\mu\nu\lambda} is invariant under rotations.

3. Solution

We apply transformations to coordinates (and thus indexes) of the form

\begin{aligned}x_\mu \rightarrow O_{\mu\nu} x_\nu\end{aligned} \hspace{\stretch{1}}(2.40)

With our tensor transforming as its indexes, we have

\begin{aligned}\epsilon_{\mu\nu\lambda} \rightarrow \epsilon_{\alpha\beta\sigma} O_{\mu\alpha} O_{\nu\beta} O_{\lambda\sigma}.\end{aligned} \hspace{\stretch{1}}(2.41)

We’ve got 2.32, which after dropping indexes, because we are in a Euclidean space, we have

\begin{aligned}\epsilon_{\mu \nu \lambda} \text{Det} {\left\lVert{A_{ij}}\right\rVert} = \epsilon_{\alpha \beta \sigma} A_{\alpha \mu} A_{\beta \nu} A_{\sigma \lambda}.\end{aligned} \hspace{\stretch{1}}(2.42)

Let A_{i j} = O_{j i}, which gives us

\begin{aligned}\epsilon_{\mu\nu\lambda} \rightarrow \epsilon_{\mu\nu\lambda} \text{Det} A^\text{T}\end{aligned} \hspace{\stretch{1}}(2.43)

but since \text{Det} O = \text{Det} O^\text{T}, we have shown that \epsilon_{\mu\nu\lambda} is invariant under rotation.

4. Statement. Rotational invariance of 4D antisymmetric tensor

Use the previous results to show that \epsilon_{i j k l} is invariant under Lorentz transformations.

4. Solution

This follows the same way. We assume a transformation of coordinates of the following form

\begin{aligned}(x')^i &= {O^i}_j x^j \\ (x')_i &= {O_i}^j x_j,\end{aligned} \hspace{\stretch{1}}(2.44)

where the determinant of {O^i}_j = 1 (sanity check of sign: {O^i}_j = {\delta^i}_j).

Our antisymmetric tensor transforms as its coordinates individually

\begin{aligned}\epsilon_{i j k l} &\rightarrow \epsilon_{a b c d} {O_i}^a{O_j}^b{O_k}^c{O_l}^d \\ &= \epsilon^{a b c d} O_{i a}O_{j b}O_{k c}O_{l d} \\ \end{aligned}

Let P_{ij} = O_{ji}, and raise and lower all the indexes in 2.46 for

\begin{aligned}-\epsilon_{s t u v} \text{Det} {\left\lVert{P_{ij}}\right\rVert}=\epsilon^{a b c d} P_{a s} P_{b t} P_{c u} P_{d v}.\end{aligned} \hspace{\stretch{1}}(2.46)

We have

\begin{aligned}\epsilon_{i j k l} &= \epsilon^{a b c d} P_{a i}P_{a j}P_{a k}P_{a l} \\ &=-\epsilon_{i j k l} \text{Det} {\left\lVert{P_{ij}}\right\rVert} \\ &=-\epsilon_{i j k l} \text{Det} {\left\lVert{O_{ij}}\right\rVert} \\ &=-\epsilon_{i j k l} \text{Det} {\left\lVert{g_{im} {O^m}_j }\right\rVert} \\ &=-\epsilon_{i j k l} (-1)(1) \\ &=\epsilon_{i j k l}\end{aligned}

Since \epsilon_{i j k l} = -\epsilon^{i j k l} both are therefore invariant under Lorentz transformation.

5. Statement. Sum of contracting symmetric and antisymmetric rank 2 tensors

Show that A^{ij} B_{ij} = 0 if A is symmetric and B is antisymmetric.

5. Solution

We swap indexes in B, switch dummy indexes, then swap indexes in A

\begin{aligned}A^{i j} B_{i j} &= -A^{i j} B_{j i} \\ &= -A^{j i} B_{i j} \\ &= -A^{i j} B_{i j} \\ \end{aligned}

Our result is the negative of itself, so must be zero.

6. Statement. Characteristic equation for the electromagnetic strength tensor

Show that P(\lambda) = \text{Det} {\left\lVert{F_{i j} - \lambda g_{i j}}\right\rVert} is invariant under Lorentz transformations. Consider the polynomial of P(\lambda), also called the characteristic polynomial of the matrix {\left\lVert{F_{i j}}\right\rVert}. Find the coefficients of the expansion of P(\lambda) in powers of \lambda in terms of the components of {\left\lVert{F_{i j}}\right\rVert}. Use the result to argue that \mathbf{E} \cdot \mathbf{B} and \mathbf{E}^2 - \mathbf{B}^2 are Lorentz invariant.

6. Solution

The invariance of the determinant

Let’s consider how any lower index rank 2 tensor transforms. Given a transformation of coordinates

\begin{aligned}(x^i)' &= {O^i}_j x^j \\ (x_i)' &= {O_i}^j x^j ,\end{aligned} \hspace{\stretch{1}}(2.47)

where \text{Det} {\left\lVert{ {O^i}_j }\right\rVert} = 1, and {O_i}^j = {O^m}_n g_{i m} g^{j n}. Let’s reflect briefly on why this determinant is unit valued. We have

\begin{aligned}(x^i)' (x_i)'= {O_i}^a x^a {O^i}_b x^b = x^b x_b,\end{aligned} \hspace{\stretch{1}}(2.49)

which implies that the transformation product is

\begin{aligned}{O_i}^a {O^i}_b = {\delta^a}_b,\end{aligned} \hspace{\stretch{1}}(2.50)

the identity matrix. The identity matrix has unit determinant, so we must have

\begin{aligned}1 = (\text{Det} \hat{G})^2 (\text{Det} {\left\lVert{ {O^i}_j }\right\rVert})^2.\end{aligned} \hspace{\stretch{1}}(2.51)

Since \text{Det} \hat{G} = -1 we have

\begin{aligned}\text{Det} {\left\lVert{ {O^i}_j }\right\rVert} = \pm 1,\end{aligned} \hspace{\stretch{1}}(2.52)

which is all that we can say about the determinant of this class of transformations by considering just invariance. If we restrict the transformations of coordinates to those of the same determinant sign as the identity matrix, we rule out reflections in time or space. This seems to be the essence of the SO(1,3) labeling.

Why dwell on this? Well, I wanted to be clear on the conventions I’d chosen, since parts of the course notes used \hat{O} = {\left\lVert{O^{i j}}\right\rVert}, and X' = \hat{O} X, and gave that matrix unit determinant. That O^{i j} looks like it is equivalent to my {O^i}_j, except that the one in the course notes is loose when it comes to lower and upper indexes since it gives (x')^i = O^{i j} x^j.

I’ll write

\begin{aligned}\hat{O} = {\left\lVert{{O^i}_j}\right\rVert},\end{aligned} \hspace{\stretch{1}}(2.53)

and require this (not {\left\lVert{O^{i j}}\right\rVert}) to be the matrix with unit determinant. Having cleared the index upper and lower confusion I had trying to reconcile the class notes with the rules for index manipulation, let’s now consider the Lorentz transformation of a lower index rank 2 tensor (not necessarily antisymmetric or symmetric)

We have, transforming in the same fashion as a lower index coordinate four vector (but twice, once for each index)

\begin{aligned}A_{i j} \rightarrow A_{k m} {O_i}^k{O_j}^m.\end{aligned} \hspace{\stretch{1}}(2.54)

The determinant of the transformation tensor {O_i}^j is

\begin{aligned}\text{Det} {\left\lVert{ {O_i}^j }\right\rVert} = \text{Det} {\left\lVert{ g^{i m} {O^m}_n g^{n j} }\right\rVert} = (\text{Det} \hat{G}) (1) (\text{Det} \hat{G} ) = (-1)^2 (1) = 1.\end{aligned} \hspace{\stretch{1}}(2.55)

We see that the determinant of a lower index rank 2 tensor is invariant under Lorentz transformation. This would include our characteristic polynomial P(\lambda).

Expanding the determinant.

Utilizing 2.39 we can now calculate the characteristic polynomial. This is

\begin{aligned}\text{Det} {\left\lVert{F_{ij} - \lambda g_{ij} }\right\rVert}&= \frac{1}{{4!}}\epsilon^{s t u v} \epsilon^{a b c d} (F_{ a s } - \lambda g_{a s}) (F_{ b t } - \lambda g_{b t}) (F_{ c u } - \lambda g_{c u}) (F_{ d v } - \lambda g_{d v}) \\ &=\frac{1}{{24}}\epsilon^{s t u v} \epsilon_{a b c d} ({F^a}_s - \lambda {g^a}_s) ({F^b}_t - \lambda {g^b}_t) ({F^c}_u - \lambda {g^c}_u) ({F^d}_v - \lambda {g^d}_v) \\ \end{aligned}

However, {g^a}_b = g_{b c} g^{a c}, or {\left\lVert{{g^a}_b}\right\rVert} = \hat{G}^2 = I. This means we have

\begin{aligned}{g^a}_b = {\delta^a}_b,\end{aligned} \hspace{\stretch{1}}(2.56)

and our determinant is reduced to

\begin{aligned}\begin{aligned}P(\lambda) &=\frac{1}{{24}}\epsilon^{s t u v} \epsilon_{a b c d} \Bigl({F^a}_s {F^b}_t - \lambda( {\delta^a}_s {F^b}_t + {\delta^b}_t {F^a}_s ) + \lambda^2 {\delta^a}_s {\delta^b}_t \Bigr) \\ &\times \qquad \qquad \Bigl({F^c}_u {F^d}_v - \lambda( {\delta^c}_u {F^d}_v + {\delta^d}_v {F^c}_u ) + \lambda^2 {\delta^c}_u {\delta^d}_v \Bigr) \end{aligned}\end{aligned} \hspace{\stretch{1}}(2.57)

If we expand this out we have our powers of \lambda coefficients are

\begin{aligned}\lambda^0 &:\frac{1}{{24}} \epsilon^{s t u v} \epsilon_{a b c d} {F^a}_s {F^b}_t {F^c}_u {F^d}_v \\ \lambda^1 &:\frac{1}{{24}} \epsilon^{s t u v} \epsilon_{a b c d} \Bigl(- ({\delta^c}_u {F^d}_v + {\delta^d}_v {F^c}_u ) {F^a}_s {F^b}_t - ({\delta^a}_s {F^b}_t + {\delta^b}_t {F^a}_s ) {F^c}_u {F^d}_v \Bigr) \\ \lambda^2 &:\frac{1}{{24}} \epsilon^{s t u v} \epsilon_{a b c d} \Bigl({\delta^c}_u {\delta^d}_v {F^a}_s {F^b}_t +( {\delta^a}_s {F^b}_t + {\delta^b}_t {F^a}_s ) ( {\delta^c}_u {F^d}_v + {\delta^d}_v {F^c}_u ) + {\delta^a}_s {\delta^b}_t  {F^c}_u {F^d}_v \Bigr) \\ \lambda^3 &:\frac{1}{{24}} \epsilon^{s t u v} \epsilon_{a b c d} \Bigl(- ( {\delta^a}_s {F^b}_t + {\delta^b}_t {F^a}_s ) {\delta^c}_u {\delta^d}_v - {\delta^a}_s {\delta^b}_t  ( {\delta^c}_u {F^d}_v + {\delta^d}_v {F^c}_u ) \Bigr) \\ \lambda^4 &:\frac{1}{{24}} \epsilon^{s t u v} \epsilon_{a b c d} \Bigl({\delta^a}_s {\delta^b}_t {\delta^c}_u {\delta^d}_v \Bigr) \\ \end{aligned}

By 2.39 the \lambda^0 coefficient is just \text{Det} {\left\lVert{F_{i j}}\right\rVert}.

The \lambda^3 terms can be seen to be zero. For example, the first one is

\begin{aligned}-\frac{1}{{24}} \epsilon^{s t u v} \epsilon_{a b c d} {\delta^a}_s {F^b}_t {\delta^c}_u {\delta^d}_v &=-\frac{1}{{24}} \epsilon^{s t u v} \epsilon_{s b u v} {F^b}_t \\ &=-\frac{1}{{12}} \delta^{t}_b {F^b}_t \\ &=-\frac{1}{{12}} {F^b}_b \\ &=-\frac{1}{{12}} F^{bu} g_{ub} \\ &= 0,\end{aligned}

where the final equality to zero comes from summing a symmetric and antisymmetric product.

Similarly the \lambda coefficients can be shown to be zero. Again the first as a sample is

\begin{aligned}-\frac{1}{{24}} \epsilon^{s t u v} \epsilon_{a b c d} {\delta^c}_u {F^d}_v {F^a}_s {F^b}_t &=-\frac{1}{{24}} \epsilon^{u s t v} \epsilon_{u a b d} {F^d}_v {F^a}_s {F^b}_t  \\ &=-\frac{1}{{24}} \delta^{[s}_a\delta^{t}_b\delta^{v]}_d{F^d}_v {F^a}_s {F^b}_t  \\ &=-\frac{1}{{24}} {F^a}_{[s}{F^b}_{t}{F^d}_{v]} \\ \end{aligned}

Disregarding the -1/24 factor, let’s just expand this antisymmetric sum

\begin{aligned}{F^a}_{[a}{F^b}_{b}{F^d}_{d]}&={F^a}_{a}{F^b}_{b}{F^d}_{d}+{F^a}_{d}{F^b}_{a}{F^d}_{b}+{F^a}_{b}{F^b}_{d}{F^d}_{a}-{F^a}_{a}{F^b}_{d}{F^d}_{b}-{F^a}_{d}{F^b}_{b}{F^d}_{a}-{F^a}_{b}{F^b}_{a}{F^d}_{d} \\ &={F^a}_{d}{F^b}_{a}{F^d}_{b}+{F^a}_{b}{F^b}_{d}{F^d}_{a} \\ \end{aligned}

Of the two terms above that were retained, they are the only ones without a zero {F^i}_i factor. Consider the first part of this remaining part of the sum. Employing the metric tensor, to raise indexes so that the antisymmetry of F^{ij} can be utilized, and then finally relabeling all the dummy indexes we have

\begin{aligned}{F^a}_{d}{F^b}_{a}{F^d}_{b}&=F^{a u}F^{b v}F^{d w}g_{d u}g_{a v}g_{b w} \\ &=(-1)^3F^{u a}F^{v b}F^{w d}g_{d u}g_{a v}g_{b w} \\ &=-(F^{u a}g_{a v})(F^{v b}g_{b w} )(F^{w d}g_{d u})\\ &=-{F^u}_v{F^v}_w{F^w}_u\\ &=-{F^a}_b{F^b}_d{F^d}_a\\ \end{aligned}

This is just the negative of the second term in the sum, leaving us with zero.

Finally, we have for the \lambda^2 coefficient (\times 24)

\begin{aligned}&\epsilon^{s t u v} \epsilon_{a b c d} \Bigl({\delta^c}_u {\delta^d}_v {F^a}_s {F^b}_t +{\delta^a}_s {F^b}_t {\delta^c}_u {F^d}_v +{\delta^b}_t {F^a}_s {\delta^d}_v {F^c}_u  \\ &\qquad +{\delta^b}_t {F^a}_s {\delta^c}_u {F^d}_v +{\delta^a}_s {F^b}_t {\delta^d}_v {F^c}_u + {\delta^a}_s {\delta^b}_t  {F^c}_u {F^d}_v \Bigr) \\ &=\epsilon^{s t u v} \epsilon_{a b u v}   {F^a}_s {F^b}_t +\epsilon^{s t u v} \epsilon_{s b u d}  {F^b}_t  {F^d}_v +\epsilon^{s t u v} \epsilon_{a t c v}  {F^a}_s  {F^c}_u  \\ &\qquad +\epsilon^{s t u v} \epsilon_{a t u d}  {F^a}_s  {F^d}_v +\epsilon^{s t u v} \epsilon_{s b c v}  {F^b}_t  {F^c}_u + \epsilon^{s t u v} \epsilon_{s t c d}    {F^c}_u {F^d}_v \\ &=\epsilon^{s t u v} \epsilon_{a b u v}   {F^a}_s {F^b}_t +\epsilon^{t v s u } \epsilon_{b d s u}  {F^b}_t  {F^d}_v +\epsilon^{s u t v} \epsilon_{a c t v}  {F^a}_s  {F^c}_u  \\ &\qquad +\epsilon^{s v t u} \epsilon_{a d t u}  {F^a}_s  {F^d}_v +\epsilon^{t u s v} \epsilon_{b c s v}  {F^b}_t  {F^c}_u + \epsilon^{u v s t} \epsilon_{c d s t}    {F^c}_u {F^d}_v \\ &=6\epsilon^{s t u v} \epsilon_{a b u v} {F^a}_s {F^b}_t  \\ &=6 (2){\delta^{[s}}_a{\delta^{t]}}_b{F^a}_s {F^b}_t  \\ &=12{F^a}_{[a} {F^b}_{b]}  \\ &=12( {F^a}_{a} {F^b}_{b} - {F^a}_{b} {F^b}_{a} ) \\ &=-12 {F^a}_{b} {F^b}_{a} \\ &=-12 F^{a b} F_{b a} \\ &=12 F^{a b} F_{a b}\end{aligned}

Therefore, our characteristic polynomial is

\begin{aligned}\boxed{P(\lambda) = \text{Det} {\left\lVert{F_{i j}}\right\rVert} + \frac{\lambda^2}{2} F^{a b} F_{a b} + \lambda^4.}\end{aligned} \hspace{\stretch{1}}(2.58)

Observe that in matrix form our strength tensors are

\begin{aligned}{\left\lVert{ F^{ij} }\right\rVert} &= \begin{bmatrix}0 & -E_x & -E_y & -E_z \\ E_x & 0 & -B_z & B_y \\ E_y & B_z & 0 & -B_x \\ E_z & -B_y & B_x & 0\end{bmatrix} \\ {\left\lVert{ F_{ij} }\right\rVert} &= \begin{bmatrix}0 & E_x & E_y & E_z \\ -E_x & 0 & -B_z & B_y \\ -E_y & B_z & 0 & -B_x \\ -E_z & -B_y & B_x & 0\end{bmatrix}.\end{aligned} \hspace{\stretch{1}}(2.59)

From these we can compute F^{a b} F_{a b} easily by inspection

\begin{aligned}F^{a b} F_{a b} = 2 (\mathbf{B}^2 - \mathbf{E}^2).\end{aligned} \hspace{\stretch{1}}(2.61)

Computing the determinant is not so easy. The dumb and simple way of expanding by cofactors takes two pages, and yields eventually

\begin{aligned}\text{Det} {\left\lVert{ F^{i j} }\right\rVert} = (\mathbf{E} \cdot \mathbf{B})^2.\end{aligned} \hspace{\stretch{1}}(2.62)

That supplies us with a relation for the characteristic polynomial in \mathbf{E} and \mathbf{B}

\begin{aligned}\boxed{P(\lambda) = (\mathbf{E} \cdot \mathbf{B})^2 + \lambda^2 (\mathbf{B}^2 - \mathbf{E}^2) + \lambda^4.}\end{aligned} \hspace{\stretch{1}}(2.63)

Observe that we found this for the special case where \mathbf{E} and \mathbf{B} were perpendicular in homework 2. Observe that when we have that perpendicularity, we can solve for the eigenvalues by inspection

\begin{aligned}\lambda \in \{ 0, 0, \pm \sqrt{ \mathbf{E}^2 - \mathbf{B}^2 } \},\end{aligned} \hspace{\stretch{1}}(2.64)

and were able to diagonalize the matrix {F^{i}}_j to solve the Lorentz force equation in parametric form. When {\left\lvert{\mathbf{E}}\right\rvert} > {\left\lvert{\mathbf{B}}\right\rvert} we had real eigenvalues and an orthogonal diagonalization when \mathbf{B} = 0. For the {\left\lvert{\mathbf{B}}\right\rvert} > {\left\lvert{\mathbf{E}}\right\rvert}, we had a two purely imaginary eigenvalues, and when \mathbf{E} = 0 this was a Hermitian diagonalization. For the general case, when one of \mathbf{E}, or \mathbf{B} was zero, things didn’t have the same nice closed form solution.

In general our eigenvalues are

\begin{aligned}\lambda = \pm \frac{1}{{\sqrt{2}}} \sqrt{ \mathbf{E}^2 - \mathbf{B}^2 \pm \sqrt{ (\mathbf{E}^2 - \mathbf{B}^2)^2 - 4 (\mathbf{E} \cdot \mathbf{B})^2 }}.\end{aligned} \hspace{\stretch{1}}(2.65)

For the purposes of this problem we really only wish to show that \mathbf{E} \cdot \mathbf{B} and \mathbf{E}^2 - \mathbf{B}^2 are Lorentz invariants. When \lambda = 0 we have P(\lambda) = (\mathbf{E} \cdot \mathbf{B})^2, a Lorentz invariant. This must mean that \mathbf{E} \cdot \mathbf{B} is itself a Lorentz invariant. Since that is invariant, and we require P(\lambda) to be invariant for any other possible values of \lambda, the difference \mathbf{E}^2 - \mathbf{B}^2 must also be Lorentz invariant.

7. Statement. Show that the pseudoscalar invariant has only boundary effects.

Use integration by parts to show that \int d^4 x \epsilon^{i j k l} F_{ i j } F_{ k l } only depends on the values of A^i(x) at the “boundary” of spacetime (e.g. the “surface” depicted on page 105 of the notes) and hence does not affect the equations of motion for the electromagnetic field.

7. Solution

This proceeds in a fairly straightforward fashion

\begin{aligned}\int d^4 x \epsilon^{i j k l} F_{ i j } F_{ k l }&=\int d^4 x \epsilon^{i j k l} (\partial_i A_j - \partial_j A_i) F_{ k l } \\ &=\int d^4 x \epsilon^{i j k l} (\partial_i A_j) F_{ k l } -\epsilon^{j i k l} (\partial_i A_j) F_{ k l } \\ &=2 \int d^4 x \epsilon^{i j k l} (\partial_i A_j) F_{ k l } \\ &=2 \int d^4 x \epsilon^{i j k l} \left( \frac{\partial {}}{\partial {x^i}}(A_j F_{ k l }-A_j \frac{\partial { F_{ k l } }}{\partial {x^i}}\right)\\ \end{aligned}

Now, observe that by the Bianchi identity, this second term is zero

\begin{aligned}\epsilon^{i j k l} \frac{\partial { F_{ k l } }}{\partial {x^i}}=-\epsilon^{j i k l} \partial_i F_{ k l } = 0\end{aligned} \hspace{\stretch{1}}(2.66)

Now we have a set of perfect differentials, and can integrate

\begin{aligned}\int d^4 x \epsilon^{i j k l} F_{ i j } F_{ k l }&= 2 \int d^4 x \epsilon^{i j k l} \frac{\partial {}}{\partial {x^i}}(A_j F_{ k l })\\ &= 2 \int dx^j dx^k dx^l\epsilon^{i j k l} {\left.{{(A_j F_{ k l })}}\right\vert}_{{\Delta x^i}}\\ \end{aligned}

We are left with a only contributions to the integral from the boundary terms on the spacetime hypervolume, three-volume normals bounding the four-volume integration in the original integral.

8. Statement. Electromagnetic duality transformations.

Show that the Maxwell equations in vacuum are invariant under the transformation: F_{i j} \rightarrow \tilde{F}_{i j}, where \tilde{F}_{i j} = \frac{1}{{2}} \epsilon_{i j k l} F^{k l} is the dual electromagnetic stress tensor. Replacing F with \tilde{F} is known as “electric-magnetic duality”. Explain this name by considering the transformation in terms of \mathbf{E} and \mathbf{B}. Are the Maxwell equations with sources invariant under electric-magnetic duality transformations?

8. Solution

Let’s first consider the explanation of the name. First recall what the expansions are of F_{i j} and F^{i j} in terms of \mathbf{E} and \mathbf{E}. These are

\begin{aligned}F_{0 \alpha} &= \partial_0 A_\alpha - \partial_\alpha A_0 \\ &= -\frac{1}{{c}} \frac{\partial {A^\alpha}}{\partial {t}} - \frac{\partial {\phi}}{\partial {x^\alpha}} \\ &= E_\alpha\end{aligned}

with F^{0 \alpha} = -E^\alpha, and E^\alpha = E_\alpha.

The magnetic field components are

\begin{aligned}F_{\beta \alpha} &= \partial_\beta A_\alpha - \partial_\alpha A_\beta \\ &= -\partial_\beta A^\alpha + \partial_\alpha A^\beta \\ &= \epsilon_{\alpha \beta \sigma} B^\sigma\end{aligned}

with F^{\beta \alpha} = \epsilon^{\alpha \beta \sigma} B_\sigma and B_\sigma = B^\sigma.

Now let’s expand the dual tensors. These are

\begin{aligned}\tilde{F}_{0 \alpha} &=\frac{1}{{2}} \epsilon_{0 \alpha i j} F^{i j} \\ &=\frac{1}{{2}} \epsilon_{0 \alpha \beta \sigma} F^{\beta \sigma} \\ &=\frac{1}{{2}} \epsilon_{0 \alpha \beta \sigma} \epsilon^{\sigma \beta \mu} B_\mu \\ &=-\frac{1}{{2}} \epsilon_{0 \alpha \beta \sigma} \epsilon^{\mu \beta \sigma} B_\mu \\ &=-\frac{1}{{2}} (2!) {\delta_\alpha}^\mu B_\mu \\ &=- B_\alpha \\ \end{aligned}

and

\begin{aligned}\tilde{F}_{\beta \alpha} &=\frac{1}{{2}} \epsilon_{\beta \alpha i j} F^{i j} \\ &=\frac{1}{{2}} \left(\epsilon_{\beta \alpha 0 \sigma} F^{0 \sigma} +\epsilon_{\beta \alpha \sigma 0} F^{\sigma 0} \right) \\ &=\epsilon_{0 \beta \alpha \sigma} (-E^\sigma) \\ &=\epsilon_{\alpha \beta \sigma} E^\sigma\end{aligned}

Summarizing we have

\begin{aligned}F_{0 \alpha} &= E^\alpha \\ F^{0 \alpha} &= -E^\alpha \\ F^{\beta \alpha} &= F_{\beta \alpha} = \epsilon_{\alpha \beta \sigma} B^\sigma \\ \tilde{F}_{0 \alpha} &= - B_\alpha \\ \tilde{F}^{0 \alpha} &= B_\alpha \\ \tilde{F}_{\beta \alpha} &= \tilde{F}^{\beta \alpha} = \epsilon_{\alpha \beta \sigma} E^\sigma\end{aligned} \hspace{\stretch{1}}(2.67)

Is there a sign error in the \tilde{F}_{0 \alpha} = - B_\alpha result? Other than that we have the same sort of structure for the tensor with E and B switched around.

Let’s write these in matrix form, to compare

\begin{aligned}\begin{array}{l l l l}{\left\lVert{ \tilde{F}_{i j} }\right\rVert} &= \begin{bmatrix}0 & -B_x & -B_y & -B_z \\ B_x & 0 & -E_z & E_y \\ B_y & E_z & 0 & E_x \\ B_z & -E_y & -E_x & 0 \\ \end{bmatrix} ^{i j} }\right\rVert} &= \begin{bmatrix}0 & B_x & B_y & B_z \\ -B_x & 0 & -E_z & E_y \\ -B_y & E_z & 0 & -E_x \\ -B_z & -E_y & E_x & 0 \\ \end{bmatrix} \\ {\left\lVert{ F^{ij} }\right\rVert} &= \begin{bmatrix}0 & -E_x & -E_y & -E_z \\ E_x & 0 & -B_z & B_y \\ E_y & B_z & 0 & -B_x \\ E_z & -B_y & B_x & 0\end{bmatrix} }\right\rVert} &= \begin{bmatrix}0 & E_x & E_y & E_z \\ -E_x & 0 & -B_z & B_y \\ -E_y & B_z & 0 & -B_x \\ -E_z & -B_y & B_x & 0\end{bmatrix}.\end{array}\end{aligned} \hspace{\stretch{1}}(2.73)

From these we can see by inspection that we have

\begin{aligned}\tilde{F}^{i j} F_{ij} = \tilde{F}_{i j} F^{ij} = 4 (\mathbf{E} \cdot \mathbf{B})\end{aligned} \hspace{\stretch{1}}(2.74)

This is consistent with the stated result in [1] (except for a factor of c due to units differences), so it appears the signs above are all kosher.

Now, let’s see if the if the dual tensor satisfies the vacuum equations.

\begin{aligned}\partial_j \tilde{F}^{i j}&=\partial_j \frac{1}{{2}} \epsilon^{i j k l} F_{k l} \\ &=\frac{1}{{2}} \epsilon^{i j k l} \partial_j (\partial_k A_l - \partial_l A_k) \\ &=\frac{1}{{2}} \epsilon^{i j k l} \partial_j \partial_k A_l - \frac{1}{{2}} \epsilon^{i j l k} \partial_k A_l \\ &=\frac{1}{{2}} (\epsilon^{i j k l} - \epsilon^{i j k l} \partial_k A_l \\ &= 0 \qquad\square\end{aligned}

So the first checks out, provided we have no sources. If we have sources, then we see here that Maxwell’s equations do not hold since this would imply that the four current density must be zero.

How about the Bianchi identity? That gives us

\begin{aligned}\epsilon^{i j k l} \partial_j \tilde{F}_{k l} &=\epsilon^{i j k l} \partial_j \frac{1}{{2}} \epsilon_{k l a b} F^{a b} \\ &=\frac{1}{{2}} \epsilon^{k l i j} \epsilon_{k l a b} \partial_j F^{a b} \\ &=\frac{1}{{2}} (2!) {\delta^i}_{[a} {\delta^j}_{b]} \partial_j F^{a b} \\ &=\partial_j (F^{i j} - F^{j i} ) \\ &=2 \partial_j F^{i j} .\end{aligned}

The factor of two is slightly curious. Is there a mistake above? If there is a mistake, it doesn’t change the fact that Maxwell’s equation

\begin{aligned}\partial_k F^{k i} = \frac{4 \pi}{c} j^i\end{aligned} \hspace{\stretch{1}}(2.75)

Gives us zero for the Bianchi identity under source free conditions of j^i = 0.

Problem 2. Transformation properties of \mathbf{E} and \mathbf{B}, again.

1. Statement

Use the form of F^{i j} from page 82 in the class notes, the transformation law for {\left\lVert{ F^{i j} }\right\rVert} given further down that same page, and the explicit form of the SO(1,3) matrix \hat{O} (say, corresponding to motion in the positive x_1 direction with speed v) to derive the transformation law of the fields \mathbf{E} and \mathbf{B}. Use the transformation law to find the electromagnetic field of a charged particle moving with constant speed v in the positive x_1 direction and check that the result agrees with the one that you obtained in Homework 2.

1. Solution

Given a transformation of coordinates

\begin{aligned}{x'}^i \rightarrow {O^i}_j x^j\end{aligned} \hspace{\stretch{1}}(3.76)

our rank 2 tensor F^{i j} transforms as

\begin{aligned}F^{i j} \rightarrow {O^i}_aF^{a b}{O^j}_b.\end{aligned} \hspace{\stretch{1}}(3.77)

Introducing matrices

\begin{aligned}\hat{O} &= {\left\lVert{{O^i}_j}\right\rVert} \\ \hat{F} &= {\left\lVert{F^{ij}}\right\rVert} = \begin{bmatrix}0 & -E_x & -E_y & -E_z \\ E_x & 0 & -B_z & B_y \\ E_y & B_z & 0 & -B_x \\ E_z & -B_y & B_x & 0\end{bmatrix} \end{aligned} \hspace{\stretch{1}}(3.78)

and noting that \hat{O}^\text{T} = {\left\lVert{{O^j}_i}\right\rVert}, we can express the electromagnetic strength tensor transformation as

\begin{aligned}\hat{F} \rightarrow \hat{O} \hat{F} \hat{O}^\text{T}.\end{aligned} \hspace{\stretch{1}}(3.80)

The class notes use {x'}^i \rightarrow O^{ij} x^j, which violates our conventions on mixed upper and lower indexes, but the end result 3.80 is the same.

\begin{aligned}{\left\lVert{{O^i}_j}\right\rVert} =\begin{bmatrix}\cosh\alpha & -\sinh\alpha & 0 & 0 \\ -\sinh\alpha & \cosh\alpha & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1\end{bmatrix}.\end{aligned} \hspace{\stretch{1}}(3.81)

Writing

\begin{aligned}C &= \cosh\alpha = \gamma \\ S &= -\sinh\alpha = -\gamma \beta,\end{aligned} \hspace{\stretch{1}}(3.82)

we can compute the transformed field strength tensor

\begin{aligned}\hat{F}' &=\begin{bmatrix}C & S & 0 & 0 \\ S & C & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1\end{bmatrix}\begin{bmatrix}0 & -E_x & -E_y & -E_z \\ E_x & 0 & -B_z & B_y \\ E_y & B_z & 0 & -B_x \\ E_z & -B_y & B_x & 0\end{bmatrix} \begin{bmatrix}C & S & 0 & 0 \\ S & C & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1\end{bmatrix} \\ &=\begin{bmatrix}C & S & 0 & 0 \\ S & C & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1\end{bmatrix}\begin{bmatrix}- S E_x        & -C E_x        & -E_y  & -E_z \\ C E_x          & S E_x         & -B_z  & B_y \\ C E_y + S B_z  & S E_y + C B_z & 0     & -B_x \\ C E_z - S B_y  & S E_z - C B_y & B_x   & 0 \end{bmatrix} \\ &=\begin{bmatrix}0 & -E_x & -C E_y - S B_z & - C E_z + S B_y \\ E_x & 0 & -S E_y - C B_z & - S E_z + C B_y \\ C E_y + S B_z & S E_y + C B_z & 0 & -B_x \\ C E_z - S B_y & S E_z - C B_y & B_x & 0\end{bmatrix} \\ &=\begin{bmatrix}0 & -E_x & -\gamma(E_y - \beta B_z) & - \gamma(E_z + \beta B_y) \\ E_x & 0 & - \gamma (-\beta E_y + B_z) & \gamma( \beta E_z + B_y) \\ \gamma (E_y - \beta B_z) & \gamma(-\beta E_y + B_z) & 0 & -B_x \\ \gamma (E_z + \beta B_y) & -\gamma(\beta E_z + B_y) & B_x & 0\end{bmatrix}.\end{aligned}

As a check we have the antisymmetry that is expected. There is also a regularity to the end result that is aesthetically pleasing, hinting that things are hopefully error free. In coordinates for \mathbf{E} and \mathbf{B} this is

\begin{aligned}E_x &\rightarrow E_x \\ E_y &\rightarrow \gamma ( E_y - \beta B_z ) \\ E_z &\rightarrow \gamma ( E_z + \beta B_y ) \\ B_z &\rightarrow B_x \\ B_y &\rightarrow \gamma ( B_y + \beta E_z ) \\ B_z &\rightarrow \gamma ( B_z - \beta E_y ) \end{aligned} \hspace{\stretch{1}}(3.84)

Writing \boldsymbol{\beta} = \mathbf{e}_1 \beta, we have

\begin{aligned}\boldsymbol{\beta} \times \mathbf{B} = \begin{vmatrix} \mathbf{e}_1 & \mathbf{e}_2 & \mathbf{e}_3 \\ \beta & 0 & 0 \\ B_x & B_y & B_z\end{vmatrix} = \mathbf{e}_2 (-\beta B_z) + \mathbf{e}_3( \beta B_y ),\end{aligned} \hspace{\stretch{1}}(3.90)

which puts us enroute to a tidier vector form

\begin{aligned}E_x &\rightarrow E_x \\ E_y &\rightarrow \gamma ( E_y + (\boldsymbol{\beta} \times \mathbf{B})_y ) \\ E_z &\rightarrow \gamma ( E_z + (\boldsymbol{\beta} \times \mathbf{B})_z ) \\ B_z &\rightarrow B_x \\ B_y &\rightarrow \gamma ( B_y - (\boldsymbol{\beta} \times \mathbf{E})_y ) \\ B_z &\rightarrow \gamma ( B_z - (\boldsymbol{\beta} \times \mathbf{E})_z ).\end{aligned} \hspace{\stretch{1}}(3.91)

For a vector \mathbf{A}, write \mathbf{A}_\parallel = (\mathbf{A} \cdot \hat{\mathbf{v}})\hat{\mathbf{v}}, \mathbf{A}_\perp = \mathbf{A} - \mathbf{A}_\parallel, allowing a compact description of the field transformation

\begin{aligned}\mathbf{E} &\rightarrow \mathbf{E}_\parallel + \gamma \mathbf{E}_\perp + \gamma (\boldsymbol{\beta} \times \mathbf{B})_\perp \\ \mathbf{B} &\rightarrow \mathbf{B}_\parallel + \gamma \mathbf{B}_\perp - \gamma (\boldsymbol{\beta} \times \mathbf{E})_\perp.\end{aligned} \hspace{\stretch{1}}(3.97)

Now, we want to consider the field of a moving particle. In the particle’s (unprimed) rest frame the field due to its potential \phi = q/r is

\begin{aligned}\mathbf{E} &= \frac{q}{r^2} \hat{\mathbf{r}} \\ \mathbf{B} &= 0.\end{aligned} \hspace{\stretch{1}}(3.99)

Coordinates for a “stationary” observer, who sees this particle moving along the x-axis at speed v are related by a boost in the -v direction

\begin{aligned}\begin{bmatrix}ct' \\ x' \\ y' \\ z'\end{bmatrix}\begin{bmatrix}\gamma & \gamma (v/c) & 0 & 0 \\ \gamma (v/c) & \gamma & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1\end{bmatrix}\begin{bmatrix}ct \\ x \\ y \\ z\end{bmatrix}.\end{aligned} \hspace{\stretch{1}}(3.101)

Therefore the fields in the observer frame will be

\begin{aligned}\mathbf{E}' &= \mathbf{E}_\parallel + \gamma \mathbf{E}_\perp - \gamma \frac{v}{c}(\mathbf{e}_1 \times \mathbf{B})_\perp = \mathbf{E}_\parallel + \gamma \mathbf{E}_\perp \\ \mathbf{B}' &= \mathbf{B}_\parallel + \gamma \mathbf{B}_\perp + \gamma \frac{v}{c}(\mathbf{e}_1 \times \mathbf{E})_\perp = \gamma \frac{v}{c}(\mathbf{e}_1 \times \mathbf{E})_\perp \end{aligned} \hspace{\stretch{1}}(3.102)

More explicitly with \mathbf{E} = \frac{q}{r^3}(x, y, z) this is

\begin{aligned}\mathbf{E}' &= \frac{q}{r^3}(x, \gamma y, \gamma z) \\ \mathbf{B}' &= \gamma \frac{q v}{c r^3} ( 0, -z, y )\end{aligned} \hspace{\stretch{1}}(3.104)

Comparing to Problem 3 in Problem set 2, I see that this matches the result obtained by separately transforming the gradient, the time partial, and the scalar potential. Actually, if I am being honest, I see that I made a sign error in all the coordinates of \mathbf{E}' when I initially did (this ungraded problem) in problem set 2. That sign error should have been obvious by considering the v=0 case which would have mysteriously resulted in inversion of all the coordinates of the observed electric field.

2. Statement

A particle is moving with velocity \mathbf{v} in perpendicular \mathbf{E} and \mathbf{B} fields, all given in some particular “stationary” frame of reference.

\begin{enumerate}
\item Show that there exists a frame where the problem of finding the particle trajectory can be reduced to having either only an electric or only a magnetic field.
\item Explain what determines which case takes place.
\item Find the velocity \mathbf{v}_0 of that frame relative to the “stationary” frame.
\end{enumerate}

2. Solution

\paragraph{Part 1 and 2:} Existence of the transformation.

In the single particle Lorentz trajectory problem we wish to solve

\begin{aligned}m c \frac{du^i}{ds} = \frac{e}{c} F^{i j} u_j,\end{aligned} \hspace{\stretch{1}}(3.106)

which in matrix form we can write as

\begin{aligned}\frac{d U}{ds} = \frac{e}{m c^2} \hat{F} \hat{G} U.\end{aligned} \hspace{\stretch{1}}(3.107)

where we write our column vector proper velocity as U = {\left\lVert{u^i}\right\rVert}. Under transformation of coordinates {u'}^i = {O^i}_j x^j, with \hat{O} = {\left\lVert{{O^i}_j}\right\rVert}, this becomes

\begin{aligned}\hat{O} \frac{d U}{ds} = \frac{e}{m c^2} \hat{O} \hat{F} \hat{O}^\text{T} \hat{G} \hat{O} U.\end{aligned} \hspace{\stretch{1}}(3.108)

Suppose we can find eigenvectors for the matrix \hat{O} \hat{F} \hat{O}^\text{T} \hat{G}. That is for some eigenvalue \lambda, we can find an eigenvector \Sigma

\begin{aligned}\hat{O} \hat{F} \hat{O}^\text{T} \hat{G} \Sigma = \lambda \Sigma.\end{aligned} \hspace{\stretch{1}}(3.109)

Rearranging we have

\begin{aligned}(\hat{O} \hat{F} \hat{O}^\text{T} \hat{G} - \lambda I) \Sigma = 0\end{aligned} \hspace{\stretch{1}}(3.110)

and conclude that \Sigma lies in the null space of the matrix \hat{O} \hat{F} \hat{O}^\text{T} \hat{G} - \lambda I and that this difference of matrices must have a zero determinant

\begin{aligned}\text{Det} (\hat{O} \hat{F} \hat{O}^\text{T} \hat{G} - \lambda I) = -\text{Det} (\hat{O} \hat{F} \hat{O}^\text{T} - \lambda \hat{G}) = 0.\end{aligned} \hspace{\stretch{1}}(3.111)

Since \hat{G} = \hat{O} \hat{G} \hat{O}^\text{T} for any Lorentz transformation \hat{O} in SO(1,3), and \text{Det} ABC = \text{Det} A \text{Det} B \text{Det} C we have

\begin{aligned}\text{Det} (\hat{O} \hat{F} \hat{O}^\text{T} - \lambda G)= \text{Det} (\hat{F} - \lambda \hat{G}).\end{aligned} \hspace{\stretch{1}}(3.112)

In problem 1.6, we called this our characteristic equation P(\lambda) = \text{Det} (\hat{F} - \lambda \hat{G}). Observe that the characteristic equation is Lorentz invariant for any \lambda, which requires that the eigenvalues \lambda are also Lorentz invariants.

In problem 1.6 of this problem set we computed that this characteristic equation expands to

\begin{aligned}P(\lambda) = \text{Det} (\hat{F} - \lambda \hat{G}) = (\mathbf{E} \cdot \mathbf{B})^2 + \lambda^2 (\mathbf{B}^2 - \mathbf{E}^2) + \lambda^4.\end{aligned} \hspace{\stretch{1}}(3.113)

The eigenvalues for the system, also each necessarily Lorentz invariants, are

\begin{aligned}\lambda = \pm \frac{1}{{\sqrt{2}}} \sqrt{ \mathbf{E}^2 - \mathbf{B}^2 \pm \sqrt{ (\mathbf{E}^2 - \mathbf{B}^2)^2 - 4 (\mathbf{E} \cdot \mathbf{B})^2 }}.\end{aligned} \hspace{\stretch{1}}(3.114)

Observe that in the specific case where \mathbf{E} \cdot \mathbf{B} = 0, as in this problem, we must have \mathbf{E}' \cdot \mathbf{B}' in all frames, and the two non-zero eigenvalues of our characteristic polynomial are simply

\begin{aligned}\lambda = \pm \sqrt{\mathbf{E}^2 - \mathbf{B}^2}.\end{aligned} \hspace{\stretch{1}}(3.115)

These and \mathbf{E} \cdot \mathbf{B} = 0 are the invariants for this system. If we have \mathbf{E}^2 > \mathbf{B}^2 in one frame, we must also have {\mathbf{E}'}^2 > {\mathbf{B}'}^2 in another frame, still maintaining perpendicular fields. In particular if \mathbf{B}' = 0 we maintain real eigenvalues. Similarly if \mathbf{B}^2 > \mathbf{E}^2 in some frame, we must always have imaginary eigenvalues, and this is also true in the \mathbf{E}' = 0 case.

While the problem can be posed as a pure diagonalization problem (and even solved numerically this way for the general constant fields case), we can also work symbolically, thinking of the trajectories problem as simply seeking a transformation of frames that reduce the scope of the problem to one that is more tractable. That does not have to be the linear transformation that diagonalizes the system. Instead we are free to transform to a frame where one of the two fields \mathbf{E}' or \mathbf{B}' is zero, provided the invariants discussed are maintained.

\paragraph{Part 3:} Finding the boost velocity that wipes out one of the fields.

Let’s now consider a Lorentz boost \hat{O}, and seek to solve for the boost velocity that wipes out one of the fields, given the invariants that must be maintained for the system

To make things concrete, suppose that our perpendicular fields are given by \mathbf{E} = E \mathbf{e}_2 and \mathbf{B} = B \mathbf{e}_3.

Let also assume that we can find the velocity \mathbf{v}_0 for which one or more of the transformed fields is zero. Suppose that velocity is

\begin{aligned}\mathbf{v}_0 = v_0 (\alpha_1, \alpha_2, \alpha_3) = v_0 \hat{\mathbf{v}}_0,\end{aligned} \hspace{\stretch{1}}(3.116)

where \alpha_i are the direction cosines of \mathbf{v}_0 so that \sum_i \alpha_i^2 = 1. We will want to compute the components of \mathbf{E} and \mathbf{B} parallel and perpendicular to this velocity.

Those are

\begin{aligned}\mathbf{E}_\parallel &= E \mathbf{e}_2 \cdot (\alpha_1, \alpha_2, \alpha_3) (\alpha_1, \alpha_2, \alpha_3) \\ &= E \alpha_2 (\alpha_1, \alpha_2, \alpha_3) \\ \end{aligned}

\begin{aligned}\mathbf{E}_\perp &= E \mathbf{e}_2 - \mathbf{E}_\parallel \\ &= E (-\alpha_1 \alpha_2, 1 - \alpha_2^2, -\alpha_2 \alpha_3) \\ &= E (-\alpha_1 \alpha_2, \alpha_1^2 + \alpha_3^2, -\alpha_2 \alpha_3) \\ \end{aligned}

For the magnetic field we have

\begin{aligned}\mathbf{B}_\parallel &= B \alpha_3 (\alpha_1, \alpha_2, \alpha_3),\end{aligned}

and

\begin{aligned}\mathbf{B}_\perp &= B \mathbf{e}_3 - \mathbf{B}_\parallel \\ &= B (-\alpha_1 \alpha_3, -\alpha_2 \alpha_3, \alpha_1^2 + \alpha_2^2)  \\ \end{aligned}

Now, observe that (\boldsymbol{\beta} \times \mathbf{B})_\parallel \propto ((\mathbf{v}_0 \times \mathbf{B}) \cdot \mathbf{v}_0) \mathbf{v}_0, but this is just zero. So we have (\boldsymbol{\beta} \times \mathbf{B})_\parallel = \boldsymbol{\beta} \times \mathbf{B}. So our cross products terms are just

\begin{aligned}\hat{\mathbf{v}}_0 \times \mathbf{B} &=         \begin{vmatrix}         \mathbf{e}_1 & \mathbf{e}_2 & \mathbf{e}_3 \\         \alpha_1 & \alpha_2 & \alpha_3 \\         0 & 0 & B         \end{vmatrix} = B (\alpha_2, -\alpha_1, 0) \\ \hat{\mathbf{v}}_0 \times \mathbf{E} &=         \begin{vmatrix}         \mathbf{e}_1 & \mathbf{e}_2 & \mathbf{e}_3 \\         \alpha_1 & \alpha_2 & \alpha_3 \\         0 & E & 0         \end{vmatrix} = E (-\alpha_3, 0, \alpha_1)\end{aligned}

We can now express how the fields transform, given this arbitrary boost velocity. From 3.97, this is

\begin{aligned}\mathbf{E} &\rightarrow E \alpha_2 (\alpha_1, \alpha_2, \alpha_3) + \gamma E (-\alpha_1 \alpha_2, \alpha_1^2 + \alpha_3^2, -\alpha_2 \alpha_3) + \gamma \frac{v_0^2}{c^2} B (\alpha_2, -\alpha_1, 0) \\ \mathbf{B} &\rightarrowB \alpha_3 (\alpha_1, \alpha_2, \alpha_3)+ \gamma B (-\alpha_1 \alpha_3, -\alpha_2 \alpha_3, \alpha_1^2 + \alpha_2^2)  - \gamma \frac{v_0^2}{c^2} E (-\alpha_3, 0, \alpha_1)\end{aligned} \hspace{\stretch{1}}(3.117)

Zero Electric field case.

Let’s tackle the two cases separately. First when {\left\lvert{\mathbf{B}}\right\rvert} > {\left\lvert{\mathbf{E}}\right\rvert}, we can transform to a frame where \mathbf{E}'=0. In coordinates from 3.117 this supplies us three sets of equations. These are

\begin{aligned}0 &= E \alpha_2 \alpha_1 (1 - \gamma) + \gamma \frac{v_0^2}{c^2} B \alpha_2  \\ 0 &= E \alpha_2^2 + \gamma E (\alpha_1^2 + \alpha_3^2) - \gamma \frac{v_0^2}{c^2} B \alpha_1  \\ 0 &= E \alpha_2 \alpha_3 (1 - \gamma).\end{aligned} \hspace{\stretch{1}}(3.119)

With an assumed solution the \mathbf{e}_3 coordinate equation implies that one of \alpha_2 or \alpha_3 is zero. Perhaps there are solutions with \alpha_3 = 0 too, but inspection shows that \alpha_2 = 0 nicely kills off the first equation. Since \alpha_1^2 + \alpha_2^2 + \alpha_3^2 = 1, that also implies that we are left with

\begin{aligned}0 = E - \frac{v_0^2}{c^2} B \alpha_1 \end{aligned} \hspace{\stretch{1}}(3.122)

Or

\begin{aligned}\alpha_1 &= \frac{E}{B} \frac{c^2}{v_0^2} \\ \alpha_2 &= 0 \\ \alpha_3 &= \sqrt{1 - \frac{E^2}{B^2} \frac{c^4}{v_0^4} }\end{aligned} \hspace{\stretch{1}}(3.123)

Our velocity was \mathbf{v}_0 = v_0 (\alpha_1, \alpha_2, \alpha_3) solving the problem for the {\left\lvert{\mathbf{B}}\right\rvert}^2 > {\left\lvert{\mathbf{E}}\right\rvert}^2 case up to an adjustable constant v_0. That constant comes with constraints however, since we must also have our cosine \alpha_1 \le 1. Expressed another way, the magnitude of the boost velocity is constrained by the relation

\begin{aligned}\frac{\mathbf{v}_0^2}{c^2} \ge {\left\lvert{\frac{E}{B}}\right\rvert}.\end{aligned} \hspace{\stretch{1}}(3.126)

It appears we may also pick the equality case, so one velocity (not unique) that should transform away the electric field is

\begin{aligned}\boxed{\mathbf{v}_0 = c \sqrt{{\left\lvert{\frac{E}{B}}\right\rvert}} \mathbf{e}_1 = \pm c \sqrt{{\left\lvert{\frac{E}{B}}\right\rvert}} \frac{\mathbf{E} \times \mathbf{B}}{{\left\lvert{\mathbf{E}}\right\rvert} {\left\lvert{\mathbf{B}}\right\rvert}}.}\end{aligned} \hspace{\stretch{1}}(3.127)

This particular boost direction is perpendicular to both fields. Observe that this highlights the invariance condition {\left\lvert{\frac{E}{B}}\right\rvert} < 1 since we see this is required for a physically realizable velocity. Boosting in this direction will reduce our problem to one that has only the magnetic field component.

Zero Magnetic field case.

Now, let’s consider the case where we transform the magnetic field away, the case when our characteristic polynomial has strictly real eigenvalues \lambda = \pm \sqrt{\mathbf{E}^2 - \mathbf{B}^2}. In this case, if we write out our equations for the transformed magnetic field and require these to separately equal zero, we have

\begin{aligned}0 &= B \alpha_3 \alpha_1 ( 1 - \gamma ) + \gamma \frac{v_0^2}{c^2} E \alpha_3 \\ 0 &= B \alpha_2 \alpha_3 ( 1 - \gamma ) \\ 0 &= B (\alpha_3^2 + \gamma (\alpha_1^2 + \alpha_2^2)) - \gamma \frac{v_0^2}{c^2} E \alpha_1.\end{aligned} \hspace{\stretch{1}}(3.128)

Similar to before we see that \alpha_3 = 0 kills off the first and second equations, leaving just

\begin{aligned}0 = B - \frac{v_0^2}{c^2} E \alpha_1.\end{aligned} \hspace{\stretch{1}}(3.131)

We now have a solution for the family of direction vectors that kill the magnetic field off

\begin{aligned}\alpha_1 &= \frac{B}{E} \frac{c^2}{v_0^2} \\ \alpha_2 &= \sqrt{ 1 - \frac{B^2}{E^2} \frac{c^4}{v_0^4} } \\ \alpha_3 &= 0.\end{aligned} \hspace{\stretch{1}}(3.132)

In addition to the initial constraint that {\left\lvert{\frac{B}{E}}\right\rvert} < 1, we have as before, constraints on the allowable values of v_0

\begin{aligned}\frac{\mathbf{v}_0^2}{c^2} \ge {\left\lvert{\frac{B}{E}}\right\rvert}.\end{aligned} \hspace{\stretch{1}}(3.135)

Like before we can pick the equality \alpha_1^2 = 1, yielding a boost direction of

\begin{aligned}\boxed{\mathbf{v}_0 = c \sqrt{{\left\lvert{\frac{B}{E}}\right\rvert}} \mathbf{e}_1 = \pm c \sqrt{{\left\lvert{\frac{B}{E}}\right\rvert}} \frac{\mathbf{E} \times \mathbf{B}}{{\left\lvert{\mathbf{E}}\right\rvert} {\left\lvert{\mathbf{B}}\right\rvert}}.}\end{aligned} \hspace{\stretch{1}}(3.136)

Again, we see that the invariance condition {\left\lvert{\mathbf{B}}\right\rvert} < {\left\lvert{\mathbf{E}}\right\rvert} is required for a physically realizable velocity if that velocity is entirely perpendicular to the fields.

Problem 3. Continuity equation for delta function current distributions.

Statement

Show explicitly that the electromagnetic 4-current j^i for a particle moving with constant velocity (considered in class, p. 100-101 of notes) is conserved \partial_i j^i = 0. Give a physical interpretation of this conservation law, for example by integrating \partial_i j^i over some spacetime region and giving an integral form to the conservation law (\partial_i j^i = 0 is known as the “continuity equation”).

Solution

First lets review. Our four current was defined as

\begin{aligned}j^i(x) = \sum_A c e_A \int_{x(\tau)} dx_A^i(\tau) \delta^4(x - x_A(\tau)).\end{aligned} \hspace{\stretch{1}}(4.137)

If each of the trajectories x_A(\tau) represents constant motion we have

\begin{aligned}x_A(\tau) = x_A(0) + \gamma_A \tau ( c, \mathbf{v}_A ).\end{aligned} \hspace{\stretch{1}}(4.138)

The spacetime split of this four vector is

\begin{aligned}x_A^0(\tau) &= x_A^0(0) + \gamma_A \tau c \\ \mathbf{x}_A(\tau) &= \mathbf{x}_A(0) + \gamma_A \tau \mathbf{v},\end{aligned} \hspace{\stretch{1}}(4.139)

with differentials

\begin{aligned}dx_A^0(\tau) &= \gamma_A d\tau c \\ d\mathbf{x}_A(\tau) &= \gamma_A d\tau \mathbf{v}_A.\end{aligned} \hspace{\stretch{1}}(4.141)

Writing out the delta functions explicitly we have

\begin{aligned}\begin{aligned}j^i(x) = \sum_A &c e_A \int_{x(\tau)} dx_A^i(\tau) \delta(x^0 - x_A^0(0) - \gamma_A c \tau) \delta(x^1 - x_A^1(0) - \gamma_A v_A^1 \tau) \\ &\delta(x^2 - x_A^2(0) - \gamma_A v_A^2 \tau) \delta(x^3 - x_A^3(0) - \gamma_A v_A^3 \tau)\end{aligned}\end{aligned} \hspace{\stretch{1}}(4.143)

So our time and space components of the current can be written

\begin{aligned}j^0(x) &= \sum_A c^2 e_A \gamma_A \int_{x(\tau)} d\tau\delta(x^0 - x_A^0(0) - \gamma_A c \tau)\delta^3(\mathbf{x} - \mathbf{x}_A(0) - \gamma_A \mathbf{v}_A \tau) \\ \mathbf{j}(x) &= \sum_A c e_A \mathbf{v}_A \gamma_A \int_{x(\tau)} d\tau\delta(x^0 - x_A^0(0) - \gamma_A c \tau)\delta^3(\mathbf{x} - \mathbf{x}_A(0) - \gamma_A \mathbf{v}_A \tau).\end{aligned} \hspace{\stretch{1}}(4.144)

Each of these integrals can be evaluated with respect to the time coordinate delta function leaving the distribution

\begin{aligned}j^0(x) &= \sum_A c e_A \delta^3(\mathbf{x} - \mathbf{x}_A(0) - \frac{\mathbf{v}_A}{c} (x^0 - x_A^0(0))) \\ \mathbf{j}(x) &= \sum_A e_A \mathbf{v}_A \delta^3(\mathbf{x} - \mathbf{x}_A(0) - \frac{\mathbf{v}_A}{c} (x^0 - x_A^0(0)))\end{aligned} \hspace{\stretch{1}}(4.146)

With this more general expression (multi-particle case) it should be possible to show that the four divergence is zero, however, the problem only asks for one particle. For the one particle case, we can make things really easy by taking the initial point in space and time as the origin, and aligning our velocity with one of the coordinates (say x).

Doing so we have the result derived in class

\begin{aligned}j = e \begin{bmatrix}c \\ v \\ 0 \\ 0 \end{bmatrix}\delta(x - v x^0/c)\delta(y)\delta(z).\end{aligned} \hspace{\stretch{1}}(4.148)

Our divergence then has only two portions

\begin{aligned}\frac{\partial {j^0}}{\partial {x^0}} &= e c (-v/c) \delta'(x - v x^0/c) \delta(y) \delta(z) \\ \frac{\partial {j^1}}{\partial {x}} &= e v \delta'(x - v x^0/c) \delta(y) \delta(z).\end{aligned} \hspace{\stretch{1}}(4.149)

and these cancel out when summed. Note that this requires us to be loose with our delta functions, treating them like regular functions that are differentiable.

For the more general multiparticle case, we can treat the sum one particle at a time, and in each case, rotate coordinates so that the four divergence only picks up one term.

As for physical interpretation via integral, we have using the four dimensional divergence theorem

\begin{aligned}\int d^4 x \partial_i j^i = \int j^i dS_i\end{aligned} \hspace{\stretch{1}}(4.151)

where dS_i is the three-volume element perpendicular to a x^i = \text{constant} plane. These volume elements are detailed generally in the text [2], however, they do note that one special case specifically dS_0 = dx dy dz, the element of the three-dimensional (spatial) volume “normal” to hyperplanes ct = \text{constant}.

Without actually computing the determinants, we have something that is roughly of the form

\begin{aligned}0 = \int j^i dS_i=\int c \rho dx dy dz+\int \mathbf{j} \cdot (\mathbf{n}_x c dt dy dz + \mathbf{n}_y c dt dx dz + \mathbf{n}_z c dt dx dy).\end{aligned} \hspace{\stretch{1}}(4.152)

This is cheating a bit to just write \mathbf{n}_x, \mathbf{n}_y, \mathbf{n}_z. Are there specific orientations required by the metric. To be precise we’d have to calculate the determinants detailed in the text, and then do the duality transformations.

Per unit time, we can write instead

\begin{aligned}\frac{\partial {}}{\partial {t}} \int \rho dV= -\int \mathbf{j} \cdot (\mathbf{n}_x dy dz + \mathbf{n}_y dx dz + \mathbf{n}_z dx dy)\end{aligned} \hspace{\stretch{1}}(4.153)

Rather loosely this appears to roughly describe that the rate of change of charge in a volume must be matched with the “flow” of current through the surface within that amount of time.

References

[1] Wikipedia. Electromagnetic tensor — wikipedia, the free encyclopedia [online]. 2011. [Online; accessed 27-February-2011]. http://en.wikipedia.org/w/index.php?title=Electromagnetic_tensor&oldid=414989505.

[2] L.D. Landau and E.M. Lifshitz. The classical theory of fields. Butterworth-Heinemann, 1980.

Posted in Math and Physics Learning. | Tagged: , , , , , , , , , , , , , , , , , , , | Leave a Comment »

PHY450H1S. Relativistic Electrodynamics Lecture 11 (Taught by Prof. Erich Poppitz). Unpacking Lorentz force equation. Lorentz transformations of the strength tensor, Lorentz field invariants, Bianchi identity, and first half of Maxwell’s.

Posted by peeterjoot on February 24, 2011

[Click here for a PDF of this post with nicer formatting (especially if my latex to wordpress script has left FORMULA DOES NOT PARSE errors.)]

Reading.

Covering chapter 3 material from the text [1].

Covering lecture notes pp. 74-83: Lorentz transformation of the strength tensor (82) [Tuesday, Feb. 8] [extra reading for the mathematically minded: gauge field, strength tensor, and gauge transformations in differential form language, not to be covered in class (83)]

Covering lecture notes pp. 84-102: Lorentz invariants of the electromagnetic field (84-86); Bianchi identity and the first half of Maxwell’s equations (87-90)

Chewing on the four vector form of the Lorentz force equation.

After much effort, we arrived at

\begin{aligned}\frac{d{{(m c u_l) }}}{ds} = \frac{e}{c} \left( \partial_l A_i - \partial_i A_l \right) u^i\end{aligned} \hspace{\stretch{1}}(2.1)

or

\begin{aligned}\frac{d{{ p_l }}}{ds} = \frac{e}{c} F_{l i} u^i\end{aligned} \hspace{\stretch{1}}(2.2)

Elements of the strength tensor

\paragraph{Claim}: there are only 6 independent elements of this matrix (tensor)

\begin{aligned}\begin{bmatrix}0 & . & . & . \\    & 0 & . & . \\    &   & 0 & . \\    &   &   & 0 \\  \end{bmatrix}\end{aligned} \hspace{\stretch{1}}(2.3)

This is a no-brainer, for we just have to mechanically plug in the elements of the field strength tensor

Recall

\begin{aligned}A^i &= (\phi, \mathbf{A}) \\ A_i &= (\phi, -\mathbf{A})\end{aligned} \hspace{\stretch{1}}(2.4)

\begin{aligned}F_{0\alpha} &= \partial_0 A_\alpha - \partial_\alpha A_0  \\ &= -\partial_0 (\mathbf{A})_\alpha - \partial_\alpha \phi  \\ \end{aligned}

\begin{aligned}F_{0\alpha} = E_\alpha\end{aligned} \hspace{\stretch{1}}(2.6)

For the purely spatial index combinations we have

\begin{aligned}F_{\alpha\beta} &= \partial_\alpha A_\beta - \partial_\beta A_\alpha  \\ &= -\partial_\alpha (\mathbf{A})_\beta + \partial_\beta (\mathbf{A})_\alpha  \\ \end{aligned}

Written out explicitly, these are

\begin{aligned}F_{1 2} &= \partial_2 (\mathbf{A})_1 -\partial_1 (\mathbf{A})_2  \\ F_{2 3} &= \partial_3 (\mathbf{A})_2 -\partial_2 (\mathbf{A})_3  \\ F_{3 1} &= \partial_1 (\mathbf{A})_3 -\partial_3 (\mathbf{A})_1 .\end{aligned} \hspace{\stretch{1}}(2.7)

We can compare this to the elements of \mathbf{B}

\begin{aligned}\mathbf{B} = \begin{vmatrix}\hat{\mathbf{x}} & \hat{\mathbf{y}} & \hat{\mathbf{z}} \\ \partial_1 & \partial_2 & \partial_3 \\ A_x & A_y & A_z\end{vmatrix}\end{aligned} \hspace{\stretch{1}}(2.10)

We see that

\begin{aligned}(\mathbf{B})_z &= \partial_1 A_y - \partial_2 A_x \\ (\mathbf{B})_x &= \partial_2 A_z - \partial_3 A_y \\ (\mathbf{B})_y &= \partial_3 A_x - \partial_1 A_z\end{aligned} \hspace{\stretch{1}}(2.11)

So we have

\begin{aligned}F_{1 2} &= - (\mathbf{B})_3 \\ F_{2 3} &= - (\mathbf{B})_1 \\ F_{3 1} &= - (\mathbf{B})_2.\end{aligned} \hspace{\stretch{1}}(2.14)

These can be summarized as simply

\begin{aligned}F_{\alpha\beta} = - \epsilon_{\alpha\beta\gamma} B_\gamma.\end{aligned} \hspace{\stretch{1}}(2.17)

This provides all the info needed to fill in the matrix above

\begin{aligned}{\left\lVert{ F_{i j} }\right\rVert} = \begin{bmatrix}0 & E_x & E_y & E_z \\ -E_x & 0 & -B_z & B_y \\ -E_y & B_z & 0 & -B_x \\ -E_z & -B_y & B_x & 0.\end{bmatrix}.\end{aligned} \hspace{\stretch{1}}(2.18)

Index raising of rank 2 tensor

To raise indexes we compute

\begin{aligned}F^{i j} = g^{i l} g^{j k} F_{l k}.\end{aligned} \hspace{\stretch{1}}(2.19)

Justifying the raising operation.

To justify this consider raising one index at a time by applying the metric tensor to our definition of F_{l k}. That is

\begin{aligned}g^{a l} F_{l k} &=g^{a l} (\partial_l A_k - \partial_k A_l) \\ &=\partial^a A_k - \partial_k A^a.\end{aligned}

Now apply the metric tensor once more

\begin{aligned}g^{b k} g^{a l} F_{l k} &=g^{b k} (\partial^a A_k - \partial_k A^a) \\ &=\partial^a A^b - \partial^b A^a.\end{aligned}

This is, by definition F^{a b}. Since a rank 2 tensor has been defined as an object that transforms like the product of two pairs of coordinates, it makes sense that this particular tensor raises in the same fashion as would a product of two vector coordinates (in this case, it happens to be an antisymmetric product of two vectors, and one of which is an operator, but we have the same idea).

Consider the components of the raised F_{i j} tensor.

\begin{aligned}F^{0\alpha} &= -F_{0\alpha} \\ F^{\alpha\beta} &= F_{\alpha\beta}.\end{aligned} \hspace{\stretch{1}}(2.20)

\begin{aligned}{\left\lVert{ F^{i j} }\right\rVert} = \begin{bmatrix}0 & -E_x & -E_y & -E_z \\ E_x & 0 & -B_z & B_y \\ E_y & B_z & 0 & -B_x \\ E_z & -B_y & B_x & 0\end{bmatrix}.\end{aligned} \hspace{\stretch{1}}(2.22)

Back to chewing on the Lorentz force equation.

\begin{aligned}m c \frac{d{{ u_i }}}{ds} = \frac{e}{c} F_{i j} u^j\end{aligned} \hspace{\stretch{1}}(2.23)

\begin{aligned}u^i &= \gamma \left( 1, \frac{\mathbf{v}}{c} \right) \\ u_i &= \gamma \left( 1, -\frac{\mathbf{v}}{c} \right)\end{aligned} \hspace{\stretch{1}}(2.24)

For the spatial components of the Lorentz force equation we have

\begin{aligned}m c \frac{d{{ u_\alpha }}}{ds} &= \frac{e}{c} F_{\alpha j} u^j \\ &= \frac{e}{c} F_{\alpha 0} u^0+ \frac{e}{c} F_{\alpha \beta} u^\beta \\ &= \frac{e}{c} (-E_{\alpha}) \gamma+ \frac{e}{c} (- \epsilon_{\alpha\beta\gamma} B_\gamma ) \frac{v^\beta}{c} \gamma \end{aligned}

But

\begin{aligned}m c \frac{d{{ u_\alpha }}}{ds} &= -m \frac{d{{(\gamma \mathbf{v}_\alpha)}}}{ds} \\ &= -m \frac{d(\gamma \mathbf{v}_\alpha)}{c \sqrt{1 - \frac{\mathbf{v}^2}{c^2}} dt} \\ &= -\gamma \frac{d(m \gamma \mathbf{v}_\alpha)}{c dt}.\end{aligned}

Canceling the common -\gamma/c terms, and switching to vector notation, we are left with

\begin{aligned}\frac{d( m \gamma \mathbf{v}_\alpha)}{dt} = e \left( E_\alpha + \frac{1}{{c}} (\mathbf{v} \times \mathbf{B})_\alpha \right).\end{aligned} \hspace{\stretch{1}}(2.26)

Now for the energy term. We have

\begin{aligned}m c \frac{d{{u_0}}}{ds} &= \frac{e}{c} F_{0\alpha} u^\alpha \\ &= \frac{e}{c} E_{\alpha} \gamma \frac{v^\alpha}{c} \\ \frac{d{{ m c \gamma }}}{ds} &=\end{aligned}

Putting the final two lines into vector form we have

\begin{aligned}\frac{d{{ (m c^2 \gamma)}}}{dt} = e \mathbf{E} \cdot \mathbf{v},\end{aligned} \hspace{\stretch{1}}(2.27)

or

\begin{aligned}\frac{d{{ \mathcal{E} }}}{dt} = e \mathbf{E} \cdot \mathbf{v}\end{aligned} \hspace{\stretch{1}}(2.28)

Transformation of rank two tensors in matrix and index form.

Transformation of the metric tensor, and some identities.

With

\begin{aligned}\hat{G} = {\left\lVert{ g_{i j} }\right\rVert} = {\left\lVert{ g^{i j} }\right\rVert}\end{aligned} \hspace{\stretch{1}}(3.29)

\paragraph{We claim:}
The rank two tensor \hat{G} transforms in the following sort of sandwich operation, and this leaves it invariant

\begin{aligned}\hat{G} \rightarrow \hat{O} \hat{G} \hat{O}^\text{T} = \hat{G}.\end{aligned} \hspace{\stretch{1}}(3.30)

To demonstrate this let’s consider a transformed vector in coordinate form as follows

\begin{aligned}{x'}^i &= O^{i j} x_j = {O^i}_j x^j \\ {x'}_i &= O_{i j} x^j = {O_i}^j x_j.\end{aligned} \hspace{\stretch{1}}(3.31)

We can thus write the equation in matrix form with

\begin{aligned}X &= {\left\lVert{x^i}\right\rVert} \\ X' &= {\left\lVert{{x'}^i}\right\rVert} \\ \hat{O} &= {\left\lVert{{O^i}_j}\right\rVert} \\ X' &= \hat{O} X\end{aligned} \hspace{\stretch{1}}(3.33)

Our invariant for the vector square, which is required to remain unchanged is

\begin{aligned}{x'}^i {x'}_i &= (O^{i j} x_j)(O_{i k} x^k) \\ &= x^k (O^{i j} O_{i k}) x_j.\end{aligned}

This shows that we have a delta function relationship for the Lorentz transform matrix, when we sum over the first index

\begin{aligned}O^{a i} O_{a j} = {\delta^i}_j.\end{aligned} \hspace{\stretch{1}}(3.37)

It appears we can put 3.37 into matrix form as

\begin{aligned}\hat{G} \hat{O}^\text{T} \hat{G} \hat{O} = I\end{aligned} \hspace{\stretch{1}}(3.38)

Now, if one considers that the transpose of a rotation is an inverse rotation, and the transpose of a boost leaves it unchanged, the transpose of a general Lorentz transformation, a composition of an arbitrary sequence of boosts and rotations, must also be a Lorentz transformation, and must then also leave the norm unchanged. For the transpose of our Lorentz transformation \hat{O} lets write

\begin{aligned}\hat{P} = \hat{O}^\text{T}\end{aligned} \hspace{\stretch{1}}(3.39)

For the action of this on our position vector let’s write

\begin{aligned}{x''}^i &= P^{i j} x_j = O^{j i} x_j \\ {x''}_i &= P_{i j} x^j = O_{j i} x^j\end{aligned} \hspace{\stretch{1}}(3.40)

so that our norm is

\begin{aligned}{x''}^a {x''}_a &= (O_{k a} x^k)(O^{j a} x_j) \\ &= x^k (O_{k a} O^{j a} ) x_j \\ &= x^j x_j \\ \end{aligned}

We must then also have an identity when summing over the second index

\begin{aligned}{\delta_{k}}^j = O_{k a} O^{j a} \end{aligned} \hspace{\stretch{1}}(3.42)

Armed with these facts on the products of O_{i j} and O^{i j} we can now consider the transformation of the metric tensor.

The rule (definition) supplied to us for the transformation of an arbitrary rank two tensor, is that this transforms as its indexes transform individually. Very much as if it was the product of two coordinate vectors and we transform those coordinates separately. Doing so for the metric tensor we have

\begin{aligned}g^{i j} &\rightarrow {O^i}_k g^{k m} {O^j}_m \\ &= ({O^i}_k g^{k m}) {O^j}_m \\ &= O^{i m} {O^j}_m \\ &= O^{i m} (O_{a m} g^{a j}) \\ &= (O^{i m} O_{a m}) g^{a j}\end{aligned}

However, by 3.42, we have O_{a m} O^{i m} = {\delta_a}^i, and we prove that

\begin{aligned}g^{i j} \rightarrow g^{i j}.\end{aligned} \hspace{\stretch{1}}(3.43)

Finally, we wish to put the above transformation in matrix form, look more carefully at the very first line

\begin{aligned}g^{i j}&\rightarrow {O^i}_k g^{k m} {O^j}_m \\ \end{aligned}

which is

\begin{aligned}\hat{G} \rightarrow \hat{O} \hat{G} \hat{O}^\text{T} = \hat{G}\end{aligned} \hspace{\stretch{1}}(3.44)

We see that this particular form of transformation, a sandwich between \hat{O} and \hat{O}^\text{T}, leaves the metric tensor invariant.

Lorentz transformation of the electrodynamic tensor

Having identified a composition of Lorentz transformation matrices, when acting on the metric tensor, leaves it invariant, it is a reasonable question to ask how this form of transformation acts on our electrodynamic tensor F^{i j}?

\paragraph{Claim:} A transformation of the following form is required to maintain the norm of the Lorentz force equation

\begin{aligned}\hat{F} \rightarrow \hat{O} \hat{F} \hat{O}^\text{T} ,\end{aligned} \hspace{\stretch{1}}(3.45)

where \hat{F} = {\left\lVert{F^{i j}}\right\rVert}. Observe that our Lorentz force equation can be written exclusively in upper index quantities as

\begin{aligned}m c \frac{d{{u^i}}}{ds} = \frac{e}{c} F^{i j} g_{j l} u^l\end{aligned} \hspace{\stretch{1}}(3.46)

Because we have a vector on one side of the equation, and it transforms by multiplication with by a Lorentz matrix in SO(1,3)

\begin{aligned}\frac{du^i}{ds} \rightarrow \hat{O} \frac{du^i}{ds} \end{aligned} \hspace{\stretch{1}}(3.47)

The LHS of the Lorentz force equation provides us with one invariant

\begin{aligned}(m c)^2 \frac{d{{u^i}}}{ds} \frac{d{{u_i}}}{ds}\end{aligned} \hspace{\stretch{1}}(3.48)

so the RHS must also provide one

\begin{aligned}\frac{e^2}{c^2} F^{i j} g_{j l} u^lF_{i k} g^{k m} u_m=\frac{e^2}{c^2} F^{i j} u_jF_{i k} u^k.\end{aligned} \hspace{\stretch{1}}(3.49)

Let’s look at the RHS in matrix form. Writing

\begin{aligned}U = {\left\lVert{u^i}\right\rVert},\end{aligned} \hspace{\stretch{1}}(3.50)

we can rewrite the Lorentz force equation as

\begin{aligned}m c \dot{U} = \frac{e}{c} \hat{F} \hat{G} U.\end{aligned} \hspace{\stretch{1}}(3.51)

In this matrix formalism our invariant 3.49 is

\begin{aligned}\frac{e^2}{c^2} (\hat{F} \hat{G} U)^\text{T} G \hat{F} \hat{G} U=\frac{e^2}{c^2} U^\text{T} \hat{G} \hat{F}^\text{T} G \hat{F} \hat{G} U.\end{aligned} \hspace{\stretch{1}}(3.52)

If we compare this to the transformed Lorentz force equation we have

\begin{aligned}m c \hat{O} \dot{U} = \frac{e}{c} \hat{F'} \hat{G} \hat{O} U.\end{aligned} \hspace{\stretch{1}}(3.53)

Our invariant for the transformed equation is

\begin{aligned}\frac{e^2}{c^2} (\hat{F'} \hat{G} \hat{O} U)^\text{T} G \hat{F'} \hat{G} \hat{O} U&=\frac{e^2}{c^2} U^\text{T} \hat{O}^\text{T} \hat{G} \hat{F'}^\text{T} G \hat{F'} \hat{G} \hat{O} U \\ \end{aligned}

Thus the transformed electrodynamic tensor \hat{F}' must satisfy the identity

\begin{aligned}\hat{O}^\text{T} \hat{G} \hat{F'}^\text{T} G \hat{F'} \hat{G} \hat{O} = \hat{G} \hat{F}^\text{T} G \hat{F} \hat{G} \end{aligned} \hspace{\stretch{1}}(3.54)

With the substitution \hat{F}' = \hat{O} \hat{F} \hat{O}^\text{T} the LHS is

\begin{aligned}\hat{O}^\text{T} \hat{G} \hat{F'}^\text{T} \hat{G} \hat{F'} \hat{G} \hat{O} &= \hat{O}^\text{T} \hat{G} ( \hat{O} \hat{F} \hat{O}^\text{T})^\T \hat{G} (\hat{O} \hat{F} \hat{O}^\text{T}) \hat{G} \hat{O}  \\ &= (\hat{O}^\text{T} \hat{G} \hat{O}) \hat{F}^\text{T} (\hat{O}^\text{T} \hat{G} \hat{O}) \hat{F} (\hat{O}^\text{T} \hat{G} \hat{O}) \\ \end{aligned}

We’ve argued that \hat{P} = \hat{O}^\text{T} is also a Lorentz transformation, thus

\begin{aligned}\hat{O}^\text{T} \hat{G} \hat{O}&=\hat{P} \hat{G} \hat{O}^\text{T} \\ &=\hat{G}\end{aligned}

This is enough to make both sides of 3.54 match, verifying that this transformation does provide the invariant properties desired.

Direct computation of the Lorentz transformation of the electrodynamic tensor.

We can construct the transformed field tensor more directly, by simply transforming the coordinates of the four gradient and the four potential directly. That is

\begin{aligned}F^{i j} = \partial^i A^j - \partial^j A^i&\rightarrow {O^i}_a {O^j}_b \left( \partial^a A^b - \partial^b A^a \right) \\ &={O^i}_a F^{a b} {O^j}_b \end{aligned}

By inspection we can see that this can be represented in matrix form as

\begin{aligned}\hat{F} \rightarrow \hat{O} \hat{F} \hat{O}^\text{T}\end{aligned} \hspace{\stretch{1}}(3.55)

Four vector invariants

For three vectors \mathbf{A} and \mathbf{B} invariants are

\begin{aligned}\mathbf{A} \cdot \mathbf{B} = A^\alpha B_\alpha\end{aligned} \hspace{\stretch{1}}(4.56)

For four vectors A^i and B^i invariants are

\begin{aligned}A^i B_i = A^i g_{i j} B^j  \end{aligned} \hspace{\stretch{1}}(4.57)

For F_{i j} what are the invariants? One invariant is

\begin{aligned}g^{i j} F_{i j} = 0,\end{aligned} \hspace{\stretch{1}}(4.58)

but this isn’t interesting since it is uniformly zero (product of symmetric and antisymmetric).

The two invariants are

\begin{aligned}F_{i j}F^{i j}\end{aligned} \hspace{\stretch{1}}(4.59)

and

\begin{aligned}\epsilon^{i j k l} F_{i j}F_{k l}\end{aligned} \hspace{\stretch{1}}(4.60)

where

\begin{aligned}\epsilon^{i j k l} =\left\{\begin{array}{l l}0 & \quad \mbox{if any two indexes coincide} \\ 1 & \quad \mbox{for even permutations of i j k l=0123$ } \\ -1 & \quad \mbox{for odd permutations of $i j k l=0123$ } \\ \end{array}\right.\end{aligned} \hspace{\stretch{1}}(4.61)$

We can show (homework) that

\begin{aligned}F_{i j}F^{i j} \propto \mathbf{E}^2 - \mathbf{B}^2\end{aligned} \hspace{\stretch{1}}(4.62)

\begin{aligned}\epsilon^{i j k l} F_{i j}F_{k l} \propto \mathbf{E} \cdot \mathbf{B}\end{aligned} \hspace{\stretch{1}}(4.63)

This first invariant serves as the action density for the Maxwell field equations.

There’s some useful properties of these invariants. One is that if the fields are perpendicular in one frame, then will be in any other.

From the first, note that if {\left\lvert{\mathbf{E}}\right\rvert} > {\left\lvert{\mathbf{B}}\right\rvert}, the invariant is positive, and must be positive in all frames, or if {\left\lvert{\mathbf{E}}\right\rvert}  {\left\lvert{\mathbf{B}}\right\rvert} in one frame, we can transform to a frame with only \mathbf{E}' component, solve that, and then transform back. Similarly if {\left\lvert{\mathbf{E}}\right\rvert} < {\left\lvert{\mathbf{B}}\right\rvert} in one frame, we can transform to a frame with only \mathbf{B}' component, solve that, and then transform back.

The first half of Maxwell’s equations.

\paragraph{Claim: } The source free portions of Maxwell’s equations are a consequence of the definition of the field tensor alone.

Given

\begin{aligned}F_{i j} = \partial_i A_j - \partial_j A_i,\end{aligned} \hspace{\stretch{1}}(5.64)

where

\begin{aligned}\partial_i = \frac{\partial {}}{\partial {x^i}}\end{aligned} \hspace{\stretch{1}}(5.65)

This alone implies half of Maxwell’s equations. To show this we consider

\begin{aligned}e^{m k i j} \partial_k F_{i j} = 0.\end{aligned} \hspace{\stretch{1}}(5.66)

This is the Bianchi identity. To demonstrate this identity, we’ll have to swap indexes, employ derivative commutation, and then swap indexes once more

\begin{aligned}e^{m k i j} \partial_k F_{i j} &= e^{m k i j} \partial_k (\partial_i A_j - \partial_j A_i) \\ &= 2 e^{m k i j} \partial_k \partial_i A_j \\ &= 2 e^{m k i j} \frac{1}{{2}} \left( \partial_k \partial_i A_j + \partial_i \partial_k A_j \right) \\ &= e^{m k i j} \partial_k \partial_i A_j e^{m i k j} \partial_k \partial_i A_j  \\ &= (e^{m k i j} - e^{m k i j}) \partial_k \partial_i A_j \\ &= 0 \qquad \square\end{aligned}

This is the 4D analogue of

\begin{aligned}\boldsymbol{\nabla} \times (\boldsymbol{\nabla} f) = 0\end{aligned} \hspace{\stretch{1}}(5.67)

i.e.

\begin{aligned}e^{\alpha\beta\gamma} \partial_\beta \partial_\gamma f = 0\end{aligned} \hspace{\stretch{1}}(5.68)

Let’s do this explicitly, starting with

\begin{aligned}{\left\lVert{ F_{i j} }\right\rVert} = \begin{bmatrix}0 & E_x & E_y & E_z \\ -E_x & 0 & -B_z & B_y \\ -E_y & B_z & 0 & -B_x \\ -E_z & -B_y & B_x & 0.\end{bmatrix}\end{aligned} \hspace{\stretch{1}}(5.69)

For the m= 0 case we have

\begin{aligned}\epsilon^{0 k i j} \partial_k F_{i j}&=\epsilon^{\alpha \beta \gamma} \partial_\alpha F_{\beta \gamma} \\ &= \epsilon^{\alpha \beta \gamma} \partial_\alpha (-\epsilon_{\beta \gamma \delta} B_\delta) \\ &= -\epsilon^{\alpha \beta \gamma} \epsilon_{\delta \beta \gamma }\partial_\alpha B_\delta \\ &= - 2 {\delta^\alpha}_\delta \partial_\alpha B_\delta \\ &= - 2 \partial_\alpha B_\alpha \end{aligned}

We must then have

\begin{aligned}\partial_\alpha B_\alpha = 0.\end{aligned} \hspace{\stretch{1}}(5.70)

This is just Gauss’s law for magnetism

\begin{aligned}\boldsymbol{\nabla} \cdot \mathbf{B} = 0.\end{aligned} \hspace{\stretch{1}}(5.71)

Let’s do the spatial portion, for which we have three equations, one for each \alpha of

\begin{aligned}e^{\alpha j k l} \partial_j F_{k l}&=e^{\alpha 0 \beta \gamma} \partial_0 F_{\beta \gamma}+e^{\alpha 0 \gamma \beta} \partial_0 F_{\gamma \beta}+e^{\alpha \beta 0 \gamma} \partial_\beta F_{0 \gamma}+e^{\alpha \beta \gamma 0} \partial_\beta F_{\gamma 0}+e^{\alpha \gamma 0 \beta} \partial_\gamma F_{0 \beta}+e^{\alpha \gamma \beta 0} \partial_\gamma F_{\beta 0} \\ &=2 \left( e^{\alpha 0 \beta \gamma} \partial_0 F_{\beta \gamma}+e^{\alpha \beta 0 \gamma} \partial_\beta F_{0 \gamma}+e^{\alpha \gamma 0 \beta} \partial_\gamma F_{0 \beta}\right) \\ &=2 e^{0 \alpha \beta \gamma} \left(-\partial_0 F_{\beta \gamma}+\partial_\beta F_{0 \gamma}- \partial_\gamma F_{0 \beta}\right)\end{aligned}

This implies

\begin{aligned}0 =-\partial_0 F_{\beta \gamma}+\partial_\beta F_{0 \gamma}- \partial_\gamma F_{0 \beta}\end{aligned} \hspace{\stretch{1}}(5.72)

Referring back to the previous expansions of 2.6 and 2.17, we have

\begin{aligned}0 =\partial_0 \epsilon_{\beta\gamma\mu} B_\mu+\partial_\beta E_\gamma- \partial_\gamma E_{\beta},\end{aligned} \hspace{\stretch{1}}(5.73)

or

\begin{aligned}\frac{1}{{c}} \frac{\partial {B_\alpha}}{\partial {t}} + (\boldsymbol{\nabla} \times \mathbf{E})_\alpha = 0.\end{aligned} \hspace{\stretch{1}}(5.74)

These are just the components of the Maxwell-Faraday equation

\begin{aligned}0 = \frac{1}{{c}} \frac{\partial {\mathbf{B}}}{\partial {t}} + \boldsymbol{\nabla} \times \mathbf{E}.\end{aligned} \hspace{\stretch{1}}(5.75)

Appendix. Some additional index gymnastics.

Transposition of mixed index tensor.

Is the transpose of a mixed index object just a substitution of the free indexes? This wasn’t obvious to me that it would be the case, especially since I’d made an error in some index gymnastics that had me temporarily convinced differently. However, working some examples clears the fog. For example let’s take the transpose of 3.37.

\begin{aligned}{\left\lVert{ {\delta^i}_j }\right\rVert}^\text{T} &= {\left\lVert{ O^{a i} O_{a j} }\right\rVert}^\text{T} \\ &= \left( {\left\lVert{ O^{j i} }\right\rVert} {\left\lVert{ O_{i j} }\right\rVert} \right)^\text{T} \\ &={\left\lVert{ O_{i j} }\right\rVert}^\text{T}{\left\lVert{ O^{j i} }\right\rVert}^\text{T}  \\ &={\left\lVert{ O_{j i} }\right\rVert}{\left\lVert{ O^{i j} }\right\rVert} \\ &={\left\lVert{ O_{a i} O^{a j} }\right\rVert} \\ \end{aligned}

If the transpose of a mixed index tensor just swapped the indexes we would have

\begin{aligned}{\left\lVert{ {\delta^i}_j }\right\rVert}^\text{T} = {\left\lVert{ O_{a i} O^{a j} }\right\rVert} \end{aligned} \hspace{\stretch{1}}(6.76)

From this it does appear that all we have to do is switch the indexes and we will write

\begin{aligned}{\delta^j}_i = O_{a i} O^{a j} \end{aligned} \hspace{\stretch{1}}(6.77)

We can consider a more general operation

\begin{aligned}{\left\lVert{{A^i}_j}\right\rVert}^\text{T}&={\left\lVert{ A^{i m} g_{m j} }\right\rVert}^\text{T} \\ &={\left\lVert{ g_{i j} }\right\rVert}^\text{T}{\left\lVert{ A^{i j} }\right\rVert}^\text{T}  \\ &={\left\lVert{ g_{i j} }\right\rVert}{\left\lVert{ A^{j i} }\right\rVert} \\ &={\left\lVert{ g_{i m} A^{j m} }\right\rVert} \\ &={\left\lVert{ {A^{j}}_i }\right\rVert}\end{aligned}

So we see that we do just have to swap indexes.

Transposition of lower index tensor.

We’ve saw above that we had

\begin{aligned}{\left\lVert{ {A^{i}}_j }\right\rVert}^\text{T} &= {\left\lVert{ {A_{j}}^i }\right\rVert} \\ {\left\lVert{ {A_{i}}^j }\right\rVert}^\text{T} &= {\left\lVert{ {A^{j}}_i }\right\rVert} \end{aligned} \hspace{\stretch{1}}(6.78)

which followed by careful treatment of the transposition in terms of A^{i j} for which we defined a transpose operation. We assumed as well that

\begin{aligned}{\left\lVert{ A_{i j} }\right\rVert}^\text{T} = {\left\lVert{ A_{j i} }\right\rVert}.\end{aligned} \hspace{\stretch{1}}(6.80)

However, this does not have to be assumed, provided that g^{i j} = g_{i j}, and (AB)^\text{T} = B^\text{T} A^\text{T}. We see this by expanding this transposition in products of A^{i j} and \hat{G}

\begin{aligned}{\left\lVert{ A_{i j} }\right\rVert}^\text{T}&= \left( {\left\lVert{g_{i j}}\right\rVert} {\left\lVert{ A^{i j} }\right\rVert} {\left\lVert{g_{i j}}\right\rVert} \right)^\text{T} \\ &= \left( {\left\lVert{g^{i j}}\right\rVert} {\left\lVert{ A^{i j} }\right\rVert} {\left\lVert{g^{i j}}\right\rVert} \right)^\text{T} \\ &= {\left\lVert{g^{i j}}\right\rVert}^\text{T} {\left\lVert{ A^{i j}}\right\rVert}^\text{T} {\left\lVert{g^{i j}}\right\rVert}^\text{T} \\ &= {\left\lVert{g^{i j}}\right\rVert} {\left\lVert{ A^{j i}}\right\rVert} {\left\lVert{g^{i j}}\right\rVert} \\ &= {\left\lVert{g_{i j}}\right\rVert} {\left\lVert{ A^{i j}}\right\rVert} {\left\lVert{g_{i j}}\right\rVert} \\ &= {\left\lVert{ A_{j i}}\right\rVert} \end{aligned}

It would be worthwhile to go through all of this index manipulation stuff and lay it out in a structured axiomatic form. What is the minimal set of assumptions, and how does all of this generalize to non-diagonal metric tensors (even in Euclidean spaces).

Translating the index expression of identity from Lorentz products to matrix form

A verification that the matrix expression 3.38, matches the index expression 3.37 as claimed is worthwhile. It would be easy to guess something similar like \hat{O}^\text{T} \hat{G} \hat{O} \hat{G} is instead the matrix representation. That was in fact my first erroneous attempt to form the matrix equivalent, but is the transpose of 3.38. Either way you get an identity, but the indexes didn’t match.

Since we have g^{i j} = g_{i j} which do we pick to do this verification? This appears to be dictated by requirements to match lower and upper indexes on the summed over index. This is probably clearest by example, so let’s expand the products on the LHS explicitly

\begin{aligned}{\left\lVert{ g^{i j} }\right\rVert} {\left\lVert{ {O^{i}}_j }\right\rVert} ^\text{T}{\left\lVert{ g_{i j} }\right\rVert}{\left\lVert{ {O^{i}}_j }\right\rVert} &=\left( {\left\lVert{ {O^{i}}_j }\right\rVert} {\left\lVert{ g^{i j} }\right\rVert} \right) ^\text{T}{\left\lVert{ g_{i j} }\right\rVert}{\left\lVert{ {O^{i}}_j }\right\rVert}  \\ &=\left( {\left\lVert{ {O^{i}}_k g^{k j} }\right\rVert} \right) ^\text{T}{\left\lVert{ g_{i m} {O^{m}}_j }\right\rVert}  \\ &={\left\lVert{ O^{i j} }\right\rVert} ^\text{T}{\left\lVert{ O_{i j} }\right\rVert}  \\ &={\left\lVert{ O^{j i} }\right\rVert} {\left\lVert{ O_{i j} }\right\rVert}  \\ &={\left\lVert{ O^{k i} O_{k j} }\right\rVert}  \\ \end{aligned}

This matches the {\left\lVert{{\delta^i}_j}\right\rVert} that we have on the RHS, and all is well.

References

[1] L.D. Landau and E.M. Lifshitz. The classical theory of fields. Butterworth-Heinemann, 1980.

Posted in Math and Physics Learning. | Tagged: , , , , , , , , , , , , , , , , , , , , , , | Leave a Comment »

Energy term of the Lorentz force equation.

Posted by peeterjoot on February 8, 2011

[Click here for a PDF of this post with nicer formatting]

Motivation.

In class this week, the Lorentz force was derived from an action (the simplest Lorentz invariant, gauge invariant, action that could be constructed)

\begin{aligned}S = - m c \int ds - \frac{e}{c} \int ds A^i u_i.\end{aligned} \hspace{\stretch{1}}(1.1)

We end up with the familiar equation, with the exception that the momentum includes the relativistically required gamma factor

\begin{aligned}\frac{d (\gamma m \mathbf{v})}{dt} = e \left( \mathbf{E} + \frac{\mathbf{v}}{c} \times \mathbf{B} \right).\end{aligned} \hspace{\stretch{1}}(1.2)

I asked what the energy term of this equation would be and was answered that we would get to it, and it could be obtained by a four vector minimization of the action which produces the Lorentz force equation of the following form

\begin{aligned}\frac{du^i}{d\tau} \propto e F^{ij} u_j.\end{aligned} \hspace{\stretch{1}}(1.3)

Let’s see if we can work this out without the four-vector approach, using the action expressed with an explicit space time split, then also work it out in the four vector form and compare as a consistency check.

Three vector approach.

The Lorentz force derivation.

For completeness, let’s work out the Lorentz force equation from the action 1.1. Parameterizing by time we have

\begin{aligned}S &= -m c^2 \int dt \sqrt{1 - \frac{\mathbf{v}^2}{c^2}} - e \int dt \sqrt{1 - \frac{\mathbf{v}^2}{c^2}} \gamma \left( 1, \frac{1}{{c}} \mathbf{v}\right) \cdot (\phi, \mathbf{A}) \\ &= -m c^2 \int dt \sqrt{1 - \frac{\mathbf{v}^2}{c^2}} - e \int dt \left( \phi - \frac{1}{{c}} \mathbf{A} \cdot \mathbf{v} \right)\end{aligned}

Our Lagrangian is therefore

\begin{aligned}\mathcal{L}(\mathbf{x}, \mathbf{v}, t) = -m c^2 \sqrt{1 - \frac{\mathbf{v}^2}{c^2}} - e \phi(\mathbf{x}, t) + \frac{e}{c} \mathbf{A}(\mathbf{x}, t) \cdot \mathbf{v}\end{aligned} \hspace{\stretch{1}}(2.4)

We can calculate our conjugate momentum easily enough

\begin{aligned}\frac{\partial {\mathcal{L}}}{\partial {\mathbf{v}}} = \gamma m \mathbf{v} + \frac{e}{c} \mathbf{A},\end{aligned} \hspace{\stretch{1}}(2.5)

and for the gradient portion of the Euler-Lagrange equations we have

\begin{aligned}\frac{\partial {\mathcal{L}}}{\partial {\mathbf{x}}} = -e \boldsymbol{\nabla} \phi + e \boldsymbol{\nabla} \left( \frac{\mathbf{v}}{c} \cdot \mathbf{A} \right).\end{aligned} \hspace{\stretch{1}}(2.6)

Utilizing the convective derivative (i.e. chain rule in fancy clothes)

\begin{aligned}\frac{d}{dt} = \mathbf{v} \cdot \boldsymbol{\nabla} + \frac{\partial {}}{\partial {t}}.\end{aligned} \hspace{\stretch{1}}(2.7)

This gives us

\begin{aligned}-e \boldsymbol{\nabla} \phi + e \boldsymbol{\nabla} \left( \frac{\mathbf{v}}{c} \cdot \mathbf{A} \right) = \frac{d(\gamma m \mathbf{v})}{dt} + \frac{e}{c} (\mathbf{v} \cdot \boldsymbol{\nabla}) \mathbf{A}+ \frac{e}{c} \frac{\partial {\mathbf{A}}}{\partial {t}},\end{aligned} \hspace{\stretch{1}}(2.8)

and a final bit of rearranging gives us

\begin{aligned}\frac{d(\gamma m \mathbf{v})}{dt} =e \left( -\boldsymbol{\nabla} \phi - \frac{1}{{c}} \frac{\partial {\mathbf{A}}}{\partial {t}}\right)+ \frac{e}{c} \left( \boldsymbol{\nabla} \left( \mathbf{v} \cdot \mathbf{A} \right) - (\mathbf{v} \cdot \boldsymbol{\nabla}) \mathbf{A}\right).\end{aligned} \hspace{\stretch{1}}(2.9)

The first set of derivatives we identify with the electric field \mathbf{E}. For the second, utilizing the vector triple product identity [1]

\begin{aligned}\mathbf{a} \times (\mathbf{b} \times \mathbf{c}) = \mathbf{b} (\mathbf{a} \cdot \mathbf{c}) - (\mathbf{a} \cdot \mathbf{b}) \mathbf{c},\end{aligned} \hspace{\stretch{1}}(2.10)

we recognize as related to the magnetic field \mathbf{v} \times \mathbf{B} = \mathbf{v} \times (\boldsymbol{\nabla} \times \mathbf{A}).

The power (energy) term.

When we start with an action explicitly constructed with Lorentz invariance as a requirement, it is somewhat odd to end up with a result that has only the spatial vector portion of what should logically be a four vector result. We have an equation for the particle momentum, but not one for the energy. In tutorial Simon provided the hint of how to approach this, and asked if we had calculated the Hamiltonian for the Lorentz force. We had only calculated the Hamiltonian for the free particle.

Considering this, we can only actually calculate a Hamiltonian for the case where \phi(\mathbf{x}, t) = \phi(\mathbf{x}) and \mathbf{A}(\mathbf{x}, t) = \mathbf{A}(\mathbf{x}), because when the potentials have any sort of time dependence we do not have a Lagrangian that is invariant under time translation. Returning to the derivation of the Hamiltonian conservation equation, we see that we must modify the argument slightly when there is a time dependence and get instead

\begin{aligned}\frac{d}{dt} \left( \frac{\partial {\mathcal{L}}}{\partial {\mathbf{v}}} \cdot \mathcal{L} - \mathcal{L} \right) + \frac{\partial {\mathcal{L}}}{\partial {t}} = 0.\end{aligned} \hspace{\stretch{1}}(2.11)

Only when there is no time dependence in the Lagrangian, do we have our conserved quantity, what we label as energy, or Hamiltonian.

From 2.5, we have

\begin{aligned}0 &= \frac{d}{dt} \left( \left( \gamma m \mathbf{v} + \frac{e}{c} \mathbf{A} \right) \cdot \mathbf{v} +m c^2 \sqrt{1 - \frac{\mathbf{v}^2}{c^2}} + e \phi - \frac{e}{c} \mathbf{A} \cdot \mathbf{v}\right) - e \frac{\partial {\phi}}{\partial {t}} + \frac{e}{c} \frac{\partial {\mathbf{A}}}{\partial {t}} \cdot \mathbf{v} \\ \end{aligned}

Our \mathbf{A} \cdot \mathbf{v} terms cancel, and we can combine the \gamma and \gamma^{-1} terms, then apply the convective derivative again

\begin{aligned}\frac{d}{dt} \left( \gamma m c^2 \right) &= - e \left( \mathbf{v} \cdot \boldsymbol{\nabla} + \frac{\partial {}}{\partial {t}} \right) \phi + e \frac{\partial {\phi}}{\partial {t}} - \frac{e}{c} \frac{\partial {\mathbf{A}}}{\partial {t}} \cdot \mathbf{v} \\ &= - e \mathbf{v} \cdot \boldsymbol{\nabla} \phi - \frac{e}{c} \frac{\partial {\mathbf{A}}}{\partial {t}} \cdot \mathbf{v} \\ &= + e \mathbf{v} \cdot \left( - \boldsymbol{\nabla} \phi - \frac{1}{{c}} \frac{\partial {\mathbf{A}}}{\partial {t}} \right).\end{aligned}

This is just

\begin{aligned}\frac{d}{dt} \left( \gamma m c^2 \right) = e \mathbf{v} \cdot \mathbf{E},\end{aligned} \hspace{\stretch{1}}(2.12)

and we find the rate of change of energy term of our four momentum equation

\begin{aligned}\frac{d}{dt}\left( \frac{E}{c}, \mathbf{p}\right) = e \left( \frac{\mathbf{v}}{c} \cdot \mathbf{E}, \mathbf{E} + \frac{\mathbf{v}}{c} \times \mathbf{B} \right).\end{aligned} \hspace{\stretch{1}}(2.13)

Specified explicilty, this is

\begin{aligned}\frac{d}{dt}\left( \gamma m \left( c, \mathbf{v} \right) \right)= e \left( \frac{\mathbf{v}}{c} \cdot \mathbf{E}, \mathbf{E} + \frac{\mathbf{v}}{c} \times \mathbf{B} \right).\end{aligned} \hspace{\stretch{1}}(2.14)

While this was the result I was looking for, once written it now stands out as incomplete relativistically. We have an equation that specifies the time derivative of a four vector. What about the spatial derivatives? We really ought to have a rank two tensor result, and not a four vector result relating the fields and the energy and momentum of the particle. The Lorentz force equation, even when expanded to four vector form, does not seem complete relativistically.

With u^i = dx^i/ds, we can rewrite 2.14 as

\begin{aligned}\partial_0 (\gamma m u^i) = e \left( \frac{\mathbf{v}}{c} \cdot \mathbf{E}, \mathbf{E} + \frac{\mathbf{v}}{c} \times \mathbf{B} \right).\end{aligned} \hspace{\stretch{1}}(2.15)

If we were to vary the action with respect to a spatial coordinate instead of time, we should end up with a similar equation of the form \partial_i (\gamma m u^i) = ?. Having been pointed at the explicitly invariant result, I wonder if those equations are independent. Let’s defer exploring this, until at least after calculating the result using a four vector form of the action.

Four vector approach.

The Lorentz force derivation from invariant action.

We can rewrite our action, parameterizing with proper time. This is

\begin{aligned}S = -m c^2 \int d\tau \sqrt{ \frac{dx^i}{d\tau} \frac{dx_i}{d\tau} }- \frac{e}{c} \int d\tau A_i \frac{dx^i}{d\tau}\end{aligned} \hspace{\stretch{1}}(3.16)

Writing \dot{x}^i = dx^i/d\tau, our Lagrangian is then

\begin{aligned}\mathcal{L}(x^i, \dot{x^i}, \tau)= -m c^2 \sqrt{ \dot{x}^i \dot{x}_i }- \frac{e}{c} A_i \dot{x}^i\end{aligned} \hspace{\stretch{1}}(3.17)

The Euler-Lagrange equations take the form

\begin{aligned}\frac{\partial {\mathcal{L}}}{\partial {x^i}} = \frac{d}{d\tau} \frac{\partial {\mathcal{L}}}{\partial {\dot{x}^i}} .\end{aligned} \hspace{\stretch{1}}(3.18)

Our gradient and conjugate momentum are

\begin{aligned}\frac{\partial {\mathcal{L}}}{\partial {x^i}} &= - \frac{e}{c} \frac{\partial {A_j}}{\partial {x^i}} \dot{x}^j  \\ \frac{\partial {\mathcal{L}}}{\partial {\dot{x}^i}}  &= -m \dot{x}_i - \frac{e}{c} A_i.\end{aligned} \hspace{\stretch{1}}(3.19)

With our convective derivative taking the form

\begin{aligned}\frac{d}{d\tau} = \dot{x}^i \frac{\partial {}}{\partial {x^i}},\end{aligned} \hspace{\stretch{1}}(3.21)

we have

\begin{aligned}m \frac{d^2 x_i}{d\tau^2} &= \frac{e}{c} \frac{\partial {A_j}}{\partial {x^i}} \dot{x}^j- \frac{e}{c} \dot{x}^j \frac{\partial {A_i}}{\partial {x^j}} \\ &=\frac{e}{c} \dot{x}^j \left( \frac{\partial {A_j}}{\partial {x^i}} -\frac{\partial {A_i}}{\partial {x^j}} \right) \\ &=\frac{e}{c} \dot{x}^j \left( \partial_i A_j - \partial_j A_i\right) \\ &=\frac{e}{c} \dot{x}^j F_{ij}\end{aligned}

Our Prof wrote this with indexes raised and lowered respectively

\begin{aligned}m \frac{d^2 x^i}{d\tau^2} = \frac{e}{c} F^{ij} \dot{x}_j .\end{aligned} \hspace{\stretch{1}}(3.22)

Following the text [2] he also writes u^i = dx^i/ds = (1/c) dx^i/d\tau, and in that form we have

\begin{aligned}\frac{d (m c u^i)}{ds} = \frac{e}{c} F^{ij} u_j.\end{aligned} \hspace{\stretch{1}}(3.23)

Expressed explicitly in terms of the three vector fields.

The power term.

From 3.23, lets extract the i=0 term, relating the rate of change of energy to the field and particle velocity. With

\begin{aligned}\frac{d{{}}}{d\tau} = \frac{dt}{d\tau} \frac{d}{dt} = \gamma \frac{d{{}}}{dt},\end{aligned} \hspace{\stretch{1}}(3.24)

we have

\begin{aligned}\frac{d{{(m \gamma \frac{dx^i}{dt})}}}{dt} = \frac{e}{c} F^{ij} \frac{d{{x_j}}}{dt}.\end{aligned} \hspace{\stretch{1}}(3.25)

For i=0 we have

\begin{aligned}F^{0j} \frac{d{{x_j}}}{dt} = -F^{0\alpha} \frac{d{{x^\alpha}}}{dt} \end{aligned} \hspace{\stretch{1}}(3.26)

That component of the field is

\begin{aligned}F^{\alpha 0} &=\partial^\alpha A^0 - \partial^0 A^\alpha \\ &=-\frac{\partial {\phi}}{\partial {x^\alpha}} - \frac{1}{{c}} \frac{\partial {A^\alpha}}{\partial {t}} \\ &= \left( -\boldsymbol{\nabla} \phi - \frac{1}{{c}} \frac{\partial {\mathbf{A}}}{\partial {t}} \right)^\alpha.\end{aligned}

This verifies the result obtained with considerably more difficulty, using the Hamiltonian like conservation relation obtained for a time translation of a time dependent Lagrangian

\begin{aligned}\frac{d{{(m \gamma c^2 )}}}{dt} = e \mathbf{E} \cdot \mathbf{v}.\end{aligned} \hspace{\stretch{1}}(3.27)

The Lorentz force terms.

Let’s also verify the signs for the i > 0 terms. For those we have

\begin{aligned}\frac{d{{(m \gamma \frac{dx^\alpha}{dt})}}}{dt} &= \frac{e}{c} F^{\alpha j} \frac{d{{x_j}}}{dt} \\ &= \frac{e}{c} F^{\alpha 0} \frac{d{{x_0}}}{dt}+\frac{e}{c} F^{\alpha \beta} \frac{d{{x_\beta}}}{dt} \\ &= e E^\alpha- \sum_{\alpha \beta} \frac{e}{c} \left( \partial^\alpha A^\beta - \partial^\beta A^\alpha\right)v^\beta \\ \end{aligned}

Since we have only spatial indexes left, lets be sloppy and imply summation over all repeated indexes, even if unmatched upper and lower. This leaves us with

\begin{aligned}-\left( \partial^\alpha A^\beta - \partial^\beta A^\alpha \right) v^\beta &=\left( \partial_\alpha A^\beta - \partial_\beta A^\alpha \right) v^\beta \\ &=\epsilon_{\alpha \beta \gamma} B^\gamma\end{aligned}

With the v^\beta contraction we have

\begin{aligned}\epsilon_{\alpha \beta \gamma} B^\gamma v^\beta = (\mathbf{v} \times \mathbf{B})^\alpha,\end{aligned} \hspace{\stretch{1}}(3.28)

leaving our first result obtained by the time parameterization of the Lagrangian

\begin{aligned}\frac{d{{(m \gamma \mathbf{v})}}}{dt} = e \left(\mathbf{E} + \frac{\mathbf{v}}{c} \times \mathbf{B} \right).\end{aligned} \hspace{\stretch{1}}(3.29)

This now has a nice symmetrical form. It’s slightly disappointing not to have a rank two tensor on the LHS like we have with the symmetric stress tensor with Poynting Vector and energy and other similar terms that relates field energy and momentum with \mathbf{E} \cdot \mathbf{J} and the charge density equivalents of the Lorentz force equation. Is there such a symmetric relationship for particles too?

References

[1] Wikipedia. Triple product — wikipedia, the free encyclopedia [online]. 2011. [Online; accessed 7-February-2011]. http://en.wikipedia.org/w/index.php?title=Triple_product&oldid=407455209.

[2] L.D. Landau and E.M. Lifshits. The classical theory of fields. Butterworth-Heinemann, 1980.

Posted in Math and Physics Learning. | Tagged: , , , , , , , , , , , , , , , | Leave a Comment »

PHY450H1S. Relativistic Electrodynamics Tutorial 1 (TA: Simon Freedman).

Posted by peeterjoot on January 21, 2011

[Click here for a PDF of this post with nicer formatting]

Worked question.

The TA blasted through a problem from Hartle [1], section 5.17 (all the while apologizing for going so slow). I’m going to have to look these notes over carefully to figure out what on Earth he was doing.

At one point he asked if anybody was completely lost. Nobody said yes, but given the class title, I had the urge to say “No, just relatively lost”.

\paragraph{Q:}
In a source’s rest frame S emits radiation isotropically with a frequency \omega with number flux f(\text{photons}/\text{cm}^2 s). Moves along x’-axis with speed V in an observer frame (O). What does the energy flux in O look like?

A brief intro with four vectors

A 3-vector:

\begin{aligned}\mathbf{a} &= (a_x, a_y, a_z) = (a^1, a^2, a^3) \\ \mathbf{b} &= (b_x, b_y, b_z) = (b^1, b^2, b^3)\end{aligned} \hspace{\stretch{1}}(1.1)

For this we have the dot product

\begin{aligned}\mathbf{a} \cdot \mathbf{b} = \sum_{\alpha=1}^3 a^\alpha b^\alpha\end{aligned} \hspace{\stretch{1}}(1.3)

Greek letters in this course (opposite to everybody else in the world, because of Landau and Lifshitz) run from 1 to 3, whereas roman letters run through the set \{0,1,2,3\}.

We want to put space and time on an equal footing and form the composite quantity (four vector)

\begin{aligned}x^i = (ct, \mathbf{r}) = (x^0, x^1, x^2, x^3),\end{aligned} \hspace{\stretch{1}}(1.4)

where

\begin{aligned}x^0 &= ct \\ x^1 &= x \\ x^2 &= y \\ x^3 &= z.\end{aligned} \hspace{\stretch{1}}(1.5)

It will also be convenient to drop indexes when referring to all the components of a four vector and we will use lower or upper case non-bold letters to represent such four vectors. For example

\begin{aligned}X = (ct, \mathbf{r}),\end{aligned} \hspace{\stretch{1}}(1.9)

or

\begin{aligned}v = \gamma \left(c, \mathbf{v} \right).\end{aligned} \hspace{\stretch{1}}(1.10)

Three vectors will be represented as letters with over arrows \vec{a} or (in text) bold face \mathbf{a}.

Recall that the squared spacetime interval between two events X_1 and X_2 is defined as

\begin{aligned}{S_{X_1, X_2}}^2 = (ct_1 - c t_2)^2 - (\mathbf{x}_1 - \mathbf{x}_2)^2.\end{aligned} \hspace{\stretch{1}}(1.11)

In particular, with one of these zero, we have an operator which takes a single four vector and spits out a scalar, measuring a “distance” from the origin

\begin{aligned}s^2 = (ct)^2 - \mathbf{r}^2.\end{aligned} \hspace{\stretch{1}}(1.12)

This motivates the introduction of a dot product for our four vector space.

\begin{aligned}X \cdot X = (ct)^2 - \mathbf{r}^2 = (x^0)^2 - \sum_{\alpha=1}^3 (x^\alpha)^2\end{aligned} \hspace{\stretch{1}}(1.13)

Utilizing the spacetime dot product of 1.13 we have for the dot product of the difference between two events

\begin{aligned}(X - Y) \cdot (X - Y)&=(x^0 - y^0)^2 - \sum_{\alpha =1}^3 (x^\alpha - y^\alpha)^2 \\ &=X \cdot X + Y \cdot Y - 2 x^0 y^0 + 2 \sum_{\alpha =1}^3 x^\alpha y^\alpha.\end{aligned}

From this, assuming our dot product 1.13 is both linear and symmetric, we have for any pair of spacetime events

\begin{aligned}X \cdot Y = x^0 y^0 - \sum_{\alpha =1}^3 x^\alpha y^\alpha.\end{aligned} \hspace{\stretch{1}}(1.14)

How do our four vectors transform? This is really just a notational issue, since this has already been discussed. In this new notation we have

\begin{aligned}{x^0}' &= ct' = \gamma ( ct - \beta x) = \gamma ( x^0 - \beta x^1 ) \\ {x^1}' &= x' = \gamma ( x - \beta ct ) = \gamma ( x^1 - \beta x^0 ) \\ {x^2}' &= x^2 \\ {x^3}' &= x^3\end{aligned} \hspace{\stretch{1}}(1.15)

where \beta = V/c, and \gamma^{-2} = 1 - \beta^2.

In order to put some structure to this, it can be helpful to express this dot product as a quadratic form. We write

\begin{aligned}A \cdot B = \begin{bmatrix}a^0 & \mathbf{a}^\text{T} \end{bmatrix}\begin{bmatrix}1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 \end{bmatrix}\begin{bmatrix}b^0 \\ \mathbf{b}\end{bmatrix}= A^\text{T} G B.\end{aligned} \hspace{\stretch{1}}(1.19)

We can write our Lorentz boost as a matrix

\begin{aligned}\begin{bmatrix}\gamma & -\beta \gamma & 0 & 0 \\ -\beta \gamma & \gamma & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}\end{aligned} \hspace{\stretch{1}}(1.20)

so that the dot product between two transformed four vectors takes the form

\begin{aligned}A' \cdot B' = A^\text{T} O^\text{T} G O B\end{aligned} \hspace{\stretch{1}}(1.21)

Back to the problem.

We will work in momentum space, where we have

\begin{aligned}p^i &= (p^0, \mathbf{p}) = \left( \frac{E}{c}, \mathbf{p}\right) \\ p^2 &= \frac{E^2}{c^2} -\mathbf{p}^2 \\ \mathbf{p} &= \hbar \mathbf{k} \\ E &= \hbar \omega \\ p^i &= \hbar k^i \\ k^i &= \left(\frac{\omega}{c}, \mathbf{k}\right)\end{aligned} \hspace{\stretch{1}}(1.22)

Justifying this.

Now, the TA blurted all this out. We know some of it from the QM context, and if we’ve been reading ahead know a bit of this from our text [2] (the energy momentum four vector relationships). Let’s go back to the classical electromagnetism and recall what we know about the relation of frequency and wave numbers for continuous fields. We want solutions to Maxwell’s equation in vacuum and can show that such solution also implies that our fields obey a wave equation

\begin{aligned}\frac{1}{{c^2}} \frac{\partial^2 \Psi}{\partial t^2} - \boldsymbol{\nabla}^2 \Psi = 0,\end{aligned} \hspace{\stretch{1}}(1.28)

where \Psi is one of \mathbf{E} or \mathbf{B}. We have other constraints imposed on the solutions by Maxwell’s equations, but require that they at least obey 1.28 in addition to these constraints.

With application of a spatial Fourier transformation of the wave equation, we find that our solution takes the form

\begin{aligned}\Psi = (2 \pi)^{-3/2} \int \tilde{\Psi}(\mathbf{k}, 0) e^{i (\omega t \pm \mathbf{k} \cdot \mathbf{x}) } d^3 \mathbf{k}.\end{aligned} \hspace{\stretch{1}}(1.29)

If one takes this as a given and applies the wave equation operator to this as a test solution, one finds without doing the Fourier transform work that we also have a constraint. That is

\begin{aligned}\frac{1}{{c^2}} (i \omega)^2 \Psi - (\pm i \mathbf{k})^2 \Psi = 0.\end{aligned} \hspace{\stretch{1}}(1.30)

So even in the continuous field domain, we have a relationship between frequency and wave number. We see that this also happens to have the form of a lightlike spacetime interval

\begin{aligned}\frac{\omega^2}{c^2} - \mathbf{k}^2 = 0.\end{aligned} \hspace{\stretch{1}}(1.31)

Also recall that the photoelectric effect imposes an experimental constraint on photon energy, where we have

\begin{aligned}E = h \nu = \frac{h}{2\pi} 2 \pi \nu = \hbar \omega\end{aligned} \hspace{\stretch{1}}(1.32)

Therefore if we impose a mechanics like P = (E/c, \mathbf{p}) relativistic energy-momentum relationship on light, it then makes sense to form a nilpotent (lightlike) four vector for our photon energy. This combines our special relativistic expectations, with the constraints on the fields imposed by classical electromagnetism. We can then write for the photon four momentum

\begin{aligned}P = \left( \frac{\hbar \omega}{c}, \hbar k \right)\end{aligned} \hspace{\stretch{1}}(1.33)

Back to the TA’s formula blitz.

Utilizing spherical polar coordinates in momentum (wave number) space, measuring the polar angle from the k^1 (x-like) axis, we can compute this polar angle in both pairs of frames,

\begin{aligned} \cos \alpha &= \frac{k^1}{{\left\lvert{\mathbf{k}}\right\rvert}} = \frac{k^1}{\omega/c} \\ \cos \alpha' &= \frac{{k^1}'}{\omega'/c} = \frac{\gamma (k^1 + \beta \omega/c)}{\gamma(\omega/c + \beta k^1)}\end{aligned} \hspace{\stretch{1}}(1.34)

Note that this requires us to assume that wave number four vectors transform in the same fashion as regular mechanical position and momentum four vectors. Also note that we have the primed frame moving negatively along the x-axis, instead of the usual positive origin shift. The question is vague enough to allow this since it only requires motion.

\paragraph{check 1}

as \beta \rightarrow 1 (ie: our primed frame velocity approaches the speed of light relative to the rest frame), \cos \alpha' \rightarrow 1, \alpha' = 0. The surface gets more and more compressed.

In the original reference frame the radiation was isotropic. In the new frame how does it change with respect to the angle? This is really a question to find this number flux rate

\begin{aligned}f'(\alpha') = ?\end{aligned} \hspace{\stretch{1}}(1.36)

In our rest frame the total number of photons traveling through the surface in a given interval of time is

\begin{aligned}N &= \int d\Omega dt f(\alpha) = \int d \phi \sin \alpha d\alpha = -2 \pi \int d(\cos\alpha) dt f(\alpha) \\ \end{aligned} \hspace{\stretch{1}}(1.37)

Here we utilize the spherical solid angle d\Omega = \sin \alpha d\alpha d\phi = - d(\cos\alpha) d\phi, and integrate \phi over the [0, 2\pi] interval. We also have to assume that our number flux density is not a function of horizontal angle \phi in the rest frame.

In the moving frame we similarly have

\begin{aligned}N' &= -2 \pi \int d(\cos\alpha') dt' f'(\alpha'),\end{aligned} \hspace{\stretch{1}}(1.39)

and we again have had to assume that our transformed number flux density is not a function of the horizontal angle \phi. This seems like a reasonable move since {k^2}' = k^2 and {k^3}' = k^3 as they are perpendicular to the boost direction.

\begin{aligned}f'(\alpha') = \frac{d(\cos\alpha)}{d(\cos\alpha')} \left( \frac{dt}{dt'} \right) f(\alpha)\end{aligned} \hspace{\stretch{1}}(1.40)

Now, utilizing a conservation of mass argument, we can argue that N = N'. Regardless of the motion of the frame, the same number of particles move through the surface. Taking ratios, and examining an infinitesimal time interval, and the associated flux through a small patch, we have

\begin{aligned}\left( \frac{d(\cos\alpha)}{d(\cos\alpha')} \right) = \left( \frac{d(\cos\alpha')}{d(\cos\alpha)} \right)^{-1} = \gamma^2 ( 1 + \beta \cos\alpha)^2\end{aligned} \hspace{\stretch{1}}(1.41)

Part of the statement above was a do-it-yourself. First recall that c t' = \gamma ( c t + \beta x ), so dt/dt' evaluated at x=0 is 1/\gamma.

The rest is messier. We can calculate the d(\cos) values in the ratio above using 1.34. For example, for d(\cos(\alpha)) we have

\begin{aligned}d(\cos\alpha) &= d \left( \frac{k^1}{\omega/c} \right) \\ &= dk^1 \frac{1}{{\omega/c}} - c \frac{1}{{\omega^2}} d\omega.\end{aligned}

If one does the same thing for d(\cos\alpha'), after a whole whack of messy algebra one finds that the differential terms and a whole lot more mystically cancels, leaving just

\begin{aligned}\frac{d\cos\alpha'}{d\cos\alpha} = \frac{\omega^2/c^2}{(\omega/c + \beta k^1)^2} (1 - \beta^2)\end{aligned} \hspace{\stretch{1}}(1.42)

A bit more reduction with reference back to 1.34 verifies 1.41.

Also note that again from 1.34 we have

\begin{aligned}\cos\alpha' = \frac{\cos\alpha + \beta}{1 + \beta \cos\alpha}\end{aligned} \hspace{\stretch{1}}(1.43)

and rearranging this for \cos\alpha' gives us

\begin{aligned}\cos\alpha = \frac{\cos\alpha' - \beta}{1 - \beta \cos\alpha'},\end{aligned} \hspace{\stretch{1}}(1.44)

which we can sum to find that

\begin{aligned}1 + \beta \cos\alpha = \frac{1}{{\gamma^2 (1 - \beta \cos \alpha')^2 }},\end{aligned} \hspace{\stretch{1}}(1.45)

so putting all the pieces together we have

\begin{aligned}f'(\alpha') = \frac{1}{{\gamma}} \frac{f(\alpha)}{(\gamma (1-\beta \cos\alpha'))^2}\end{aligned} \hspace{\stretch{1}}(1.46)

The question asks for the energy flux density. We get this by multiplying the number density by the frequency of the light in question. This is, as a function of the polar angle, in each of the frames.

\begin{aligned}L(\alpha) &= \hbar \omega(\alpha) f(\alpha) = \hbar \omega f \\ L'(\alpha') &= \hbar \omega'(\alpha') f'(\alpha') = \hbar \omega' f'\end{aligned} \hspace{\stretch{1}}(1.47)

But we have

\begin{aligned}\omega'(\alpha')/c = \gamma( \omega/c + \beta k^1 ) = \gamma \omega/c ( 1 + \beta \cos\alpha )\end{aligned} \hspace{\stretch{1}}(1.49)

Aside, \beta << 1,

\begin{aligned}\omega' = \omega ( 1 + \beta \cos\alpha) + O(\beta^2) = \omega + \delta \omega\end{aligned} \hspace{\stretch{1}}(1.50)

\begin{aligned}\delta \omega &= \beta, \alpha = 0 		\qquad \text{blue shift} \\ \delta \omega &= -\beta, \alpha = \pi 		\qquad \text{red shift}\end{aligned} \hspace{\stretch{1}}(1.51)

The TA then writes

\begin{aligned}L'(\alpha') = \frac{L/\gamma}{(\gamma (1 - \beta \cos\alpha'))^3}\end{aligned} \hspace{\stretch{1}}(1.53)

although, I calculate

\begin{aligned}L'(\alpha') = \frac{L}{\gamma^4 (\gamma (1 - \beta \cos\alpha'))^4}\end{aligned} \hspace{\stretch{1}}(1.54)

He then says, the forward backward ratio is

\begin{aligned}L'(0)/L'(\pi) = {\left( \frac{ 1 + \beta }{1-\beta} \right)}^3\end{aligned} \hspace{\stretch{1}}(1.55)

The forward radiation is much bigger than the backwards radiation.

For this I get:

\begin{aligned}L'(0)/L'(\pi) = {\left( \frac{ 1 + \beta }{1-\beta} \right)}^4\end{aligned} \hspace{\stretch{1}}(1.56)

It is still bigger for \beta positive, which I think is the point.

If I can somehow manage to keep my signs right as I do this course I may survive. Why did he pick a positive sign way back in 1.34?

References

[1] J.B. Hartle and T. Dray. Gravity: an introduction to Einsteins general relativity, volume 71. 2003.

[2] L.D. Landau and E.M. Lifshits. The classical theory of fields. Butterworth-Heinemann, 1980.

Posted in Math and Physics Learning. | Tagged: , , , , , , , , , , , , , , , , , | Leave a Comment »

Multivector commutators and Lorentz boosts.

Posted by peeterjoot on October 31, 2010

[Click here for a PDF of this post with nicer formatting]

Motivation.

In some reading there I found that the electrodynamic field components transform in a reversed sense to that of vectors, where instead of the perpendicular to the boost direction remaining unaffected, those are the parts that are altered.

To explore this, look at the Lorentz boost action on a multivector, utilizing symmetric and antisymmetric products to split that vector into portions effected and unaffected by the boost. For the bivector (electrodynamic case) and the four vector case, examine how these map to dot and wedge (or cross) products.

The underlying motivator for this boost consideration is an attempt to see where equation (6.70) of [1] comes from. We get to this by the very end.

Guts.

Structure of the bivector boost.

Recall that we can write our Lorentz boost in exponential form with

\begin{aligned}L &= e^{\alpha \boldsymbol{\sigma}/2} \\ X' &= L^\dagger X L,\end{aligned} \hspace{\stretch{1}}(2.1)

where \boldsymbol{\sigma} is a spatial vector. This works for our bivector field too, assuming the composite transformation is an outermorphism of the transformed four vectors. Applying the boost to both the gradient and the potential our transformed field is then

\begin{aligned}F' &= \nabla' \wedge A' \\ &= (L^\dagger \nabla L) \wedge (L^\dagger A L) \\ &= \frac{1}{{2}} \left((L^\dagger \stackrel{ \rightarrow }{\nabla} L) (L^\dagger A L) -(L^\dagger A L) (L^\dagger \stackrel{ \leftarrow }{\nabla} L)\right) \\ &= \frac{1}{{2}} L^\dagger \left( \stackrel{ \rightarrow }{\nabla} A - A \stackrel{ \leftarrow }{\nabla} \right) L  \\ &= L^\dagger (\nabla \wedge A) L.\end{aligned}

Note that arrows were used briefly to indicate that the partials of the gradient are still acting on A despite their vector components being to one side. We are left with the very simple transformation rule

\begin{aligned}F' = L^\dagger F L,\end{aligned} \hspace{\stretch{1}}(2.3)

which has exactly the same structure as the four vector boost.

Employing the commutator and anticommutator to find the parallel and perpendicular components.

If we apply the boost to a four vector, those components of the four vector that commute with the spatial direction \boldsymbol{\sigma} are unaffected. As an example, which also serves to ensure we have the sign of the rapidity angle \alpha correct, consider \boldsymbol{\sigma} = \boldsymbol{\sigma}_1. We have

\begin{aligned}X' = e^{-\alpha \boldsymbol{\sigma}/2} ( x^0 \gamma_0 + x^1 \gamma_1 + x^2 \gamma_2 + x^3 \gamma_3 ) (\cosh \alpha/2 + \gamma_1 \gamma_0 \sinh \alpha/2 )\end{aligned} \hspace{\stretch{1}}(2.4)

We observe that the scalar and \boldsymbol{\sigma}_1 = \gamma_1 \gamma_0 components of the exponential commute with \gamma_2 and \gamma_3 since there is no vector in common, but that \boldsymbol{\sigma}_1 anticommutes with \gamma_0 and \gamma_1. We can therefore write

\begin{aligned}X' &= x^2 \gamma_2 + x^3 \gamma_3 +( x^0 \gamma_0 + x^1 \gamma_1 + ) (\cosh \alpha + \gamma_1 \gamma_0 \sinh \alpha ) \\ &= x^2 \gamma_2 + x^3 \gamma_3 +\gamma_0 ( x^0 \cosh\alpha - x^1 \sinh \alpha )+ \gamma_1 ( x^1 \cosh\alpha - x^0 \sinh \alpha )\end{aligned}

reproducing the familiar matrix result should we choose to write it out. How can we express the commutation property without resorting to components. We could write the four vector as a spatial and timelike component, as in

\begin{aligned}X = x^0 \gamma_0 + \mathbf{x} \gamma_0,\end{aligned} \hspace{\stretch{1}}(2.5)

and further separate that into components parallel and perpendicular to the spatial unit vector \boldsymbol{\sigma} as

\begin{aligned}X = x^0 \gamma_0 + (\mathbf{x} \cdot \boldsymbol{\sigma}) \boldsymbol{\sigma} \gamma_0 + (\mathbf{x} \wedge \boldsymbol{\sigma}) \boldsymbol{\sigma} \gamma_0.\end{aligned} \hspace{\stretch{1}}(2.6)

However, it would be nicer to group the first two terms together, since they are ones that are affected by the transformation. It would also be nice to not have to resort to spatial dot and wedge products, since we get into trouble too easily if we try to mix dot and wedge products of four vector and spatial vector components.

What we can do is employ symmetric and antisymmetric products (the anticommutator and commutator respectively). Recall that we can write any multivector product this way, and in particular

\begin{aligned}M \boldsymbol{\sigma} = \frac{1}{{2}} (M \boldsymbol{\sigma}  + \boldsymbol{\sigma} M) + \frac{1}{{2}} (M \boldsymbol{\sigma} - \boldsymbol{\sigma} M).\end{aligned} \hspace{\stretch{1}}(2.7)

Left multiplying by the unit spatial vector \boldsymbol{\sigma} we have

\begin{aligned}M = \frac{1}{{2}} (M + \boldsymbol{\sigma} M \boldsymbol{\sigma}) + \frac{1}{{2}} (M - \boldsymbol{\sigma} M \boldsymbol{\sigma}) = \frac{1}{{2}} \left\{{M},{\boldsymbol{\sigma}}\right\} \boldsymbol{\sigma} + \frac{1}{{2}} \left[{M},{\boldsymbol{\sigma}}\right] \boldsymbol{\sigma}.\end{aligned} \hspace{\stretch{1}}(2.8)

When M = \mathbf{a} is a spatial vector this is our familiar split into parallel and perpendicular components with the respective projection and rejection operators

\begin{aligned}\mathbf{a} = \frac{1}{{2}} \left\{\mathbf{a},{\boldsymbol{\sigma}}\right\} \boldsymbol{\sigma} + \frac{1}{{2}} \left[{\mathbf{a}},{\boldsymbol{\sigma}}\right] \boldsymbol{\sigma} = (\mathbf{a} \cdot \boldsymbol{\sigma}) \boldsymbol{\sigma} + (\mathbf{a} \wedge \boldsymbol{\sigma}) \boldsymbol{\sigma}.\end{aligned} \hspace{\stretch{1}}(2.9)

However, the more general split employing symmetric and antisymmetric products in 2.8, is something we can use for our four vector and bivector objects too.

Observe that we have the commutation and anti-commutation relationships

\begin{aligned}\left( \frac{1}{{2}} \left\{{M},{\boldsymbol{\sigma}}\right\} \boldsymbol{\sigma} \right) \boldsymbol{\sigma} &= \boldsymbol{\sigma} \left( \frac{1}{{2}} \left\{{M},{\boldsymbol{\sigma}}\right\} \boldsymbol{\sigma} \right) \\ \left( \frac{1}{{2}} \left[{M},{\boldsymbol{\sigma}}\right] \boldsymbol{\sigma} \right) \boldsymbol{\sigma} &= -\boldsymbol{\sigma} \left( \frac{1}{{2}} \left[{M},{\boldsymbol{\sigma}}\right] \boldsymbol{\sigma} \right).\end{aligned} \hspace{\stretch{1}}(2.10)

This split therefore serves to separate the multivector object in question nicely into the portions that are acted on by the Lorentz boost, or left unaffected.

Application of the symmetric and antisymmetric split to the bivector field.

Let’s apply 2.8 to the spacetime event X again with an x-axis boost \sigma = \sigma_1. The anticommutator portion of X in this boost direction is

\begin{aligned}\frac{1}{{2}} \left\{{X},{\boldsymbol{\sigma}_1}\right\} \boldsymbol{\sigma}_1&=\frac{1}{{2}} \left(\left( x^0 \gamma_0 + x^1 \gamma_1 + x^2 \gamma_2 + x^3 \gamma_3 \right)+\gamma_1 \gamma_0\left( x^0 \gamma_0 + x^1 \gamma_1 + x^2 \gamma_2 + x^3 \gamma_3 \right) \gamma_1 \gamma_0\right) \\ &=x^2 \gamma_2 + x^3 \gamma_3,\end{aligned}

whereas the commutator portion gives us

\begin{aligned}\frac{1}{{2}} \left[{X},{\boldsymbol{\sigma}_1}\right] \boldsymbol{\sigma}_1&=\frac{1}{{2}} \left(\left( x^0 \gamma_0 + x^1 \gamma_1 + x^2 \gamma_2 + x^3 \gamma_3 \right)-\gamma_1 \gamma_0\left( x^0 \gamma_0 + x^1 \gamma_1 + x^2 \gamma_2 + x^3 \gamma_3 \right) \gamma_1 \gamma_0\right) \\ &=x^0 \gamma_0 + x^1 \gamma_1.\end{aligned}

We’ve seen that only these commutator portions are acted on by the boost. We have therefore found the desired logical grouping of the four vector X into portions that are left unchanged by the boost and those that are affected. That is

\begin{aligned}\frac{1}{{2}} \left[{X},{\boldsymbol{\sigma}}\right] \boldsymbol{\sigma} &= x^0 \gamma_0 + (\mathbf{x} \cdot \boldsymbol{\sigma}) \boldsymbol{\sigma} \gamma_0  \\ \frac{1}{{2}} \left\{{X},{\boldsymbol{\sigma}}\right\} \boldsymbol{\sigma} &= (\mathbf{x} \wedge \boldsymbol{\sigma}) \boldsymbol{\sigma} \gamma_0 \end{aligned} \hspace{\stretch{1}}(2.12)

Let’s now return to the bivector field F = \nabla \wedge A = \mathbf{E} + I c \mathbf{B}, and split that multivector into boostable and unboostable portions with the commutator and anticommutator respectively.

Observing that our pseudoscalar I commutes with all spatial vectors we have for the anticommutator parts that will not be affected by the boost

\begin{aligned}\frac{1}{{2}} \left\{{\mathbf{E} + I c \mathbf{B}},{\boldsymbol{\sigma}}\right\} \boldsymbol{\sigma} &= (\mathbf{E} \cdot \boldsymbol{\sigma}) \boldsymbol{\sigma} + I c (\mathbf{B} \cdot \boldsymbol{\sigma}) \boldsymbol{\sigma},\end{aligned} \hspace{\stretch{1}}(2.14)

and for the components that will be boosted we have

\begin{aligned}\frac{1}{{2}} \left[{\mathbf{E} + I c \mathbf{B}},{\boldsymbol{\sigma}}\right] \boldsymbol{\sigma} &= (\mathbf{E} \wedge \boldsymbol{\sigma}) \boldsymbol{\sigma} + I c (\mathbf{B} \wedge \boldsymbol{\sigma}) \boldsymbol{\sigma}.\end{aligned} \hspace{\stretch{1}}(2.15)

For the four vector case we saw that the components that lay “perpendicular” to the boost direction, were unaffected by the boost. For the field we see the opposite, and the components of the individual electric and magnetic fields that are parallel to the boost direction are unaffected.

Our boosted field is therefore

\begin{aligned}F' = (\mathbf{E} \cdot \boldsymbol{\sigma}) \boldsymbol{\sigma} + I c (\mathbf{B} \cdot \boldsymbol{\sigma}) \boldsymbol{\sigma}+ \left( (\mathbf{E} \wedge \boldsymbol{\sigma}) \boldsymbol{\sigma} + I c (\mathbf{B} \wedge \boldsymbol{\sigma}) \boldsymbol{\sigma}\right) \left( \cosh \alpha + \boldsymbol{\sigma} \sinh \alpha \right)\end{aligned} \hspace{\stretch{1}}(2.16)

Focusing on just the non-parallel terms we have

\begin{aligned}\left( (\mathbf{E} \wedge \boldsymbol{\sigma}) \boldsymbol{\sigma} + I c (\mathbf{B} \wedge \boldsymbol{\sigma}) \boldsymbol{\sigma}\right) \left( \cosh \alpha + \boldsymbol{\sigma} \sinh \alpha \right)&=(\mathbf{E}_\perp + I c \mathbf{B}_\perp ) \cosh\alpha+(I \mathbf{E} \times \boldsymbol{\sigma} - c \mathbf{B} \times \boldsymbol{\sigma} ) \sinh\alpha \\ &=\mathbf{E}_\perp \cosh\alpha - c (\mathbf{B} \times \boldsymbol{\sigma} ) \sinh\alpha + I ( c \mathbf{B}_\perp \cosh\alpha + (\mathbf{E} \times \boldsymbol{\sigma}) \sinh\alpha ) \\ &=\gamma \left(\mathbf{E}_\perp - c (\mathbf{B} \times \boldsymbol{\sigma} ) {\left\lvert{\mathbf{v}}\right\rvert}/c+ I ( c \mathbf{B}_\perp + (\mathbf{E} \times \boldsymbol{\sigma}) {\left\lvert{\mathbf{v}}\right\rvert}/c) \right)\end{aligned}

A final regrouping gives us

\begin{aligned}F'&=\mathbf{E}_\parallel + \gamma \left( \mathbf{E}_\perp - \mathbf{B} \times \mathbf{v} \right)+I c \left( \mathbf{B}_\parallel + \gamma \left( \mathbf{B}_\perp + \mathbf{E} \times \mathbf{v}/c^2 \right) \right)\end{aligned} \hspace{\stretch{1}}(2.17)

In particular when we consider the proton, electron system as in equation (6.70) of [1] where it is stated that the electron will feel a magnetic field given by

\begin{aligned}\mathbf{B} = - \frac{\mathbf{v}}{c} \times \mathbf{E}\end{aligned} \hspace{\stretch{1}}(2.18)

we can see where this comes from. If F = \mathbf{E} + I c (0) is the field acting on the electron, then application of a \mathbf{v} boost to the electron perpendicular to the field (ie: radial motion), we get

\begin{aligned}F' = I c \gamma \mathbf{E} \times \mathbf{v}/c^2 =-I c \gamma \frac{\mathbf{v}}{c^2} \times \mathbf{E}\end{aligned} \hspace{\stretch{1}}(2.19)

We also have an additional 1/c factor in our result, but that’s a consequence of the choice of units where the dimensions of \mathbf{E} match c \mathbf{B}, whereas in the text we have \mathbf{E} and \mathbf{B} in the same units. We also have an additional \gamma factor, so we must presume that {\left\lvert{\mathbf{v}}\right\rvert} << c in this portion of the text. That is actually a requirement here, for if the electron was already in motion, we'd have to boost a field that also included a magnetic component. A consequence of this is that the final interaction Hamiltonian of (6.75) is necessarily non-relativistic.

References

[1] BR Desai. Quantum mechanics with basic field theory. Cambridge University Press, 2009.

Posted in Math and Physics Learning. | Tagged: , , , , , , , , , , , , , , , , , , , , | Leave a Comment »

Electromagnetic Gauge invariance.

Posted by peeterjoot on September 24, 2009

[Click here for a PDF of this post with nicer formatting]

At the end of section 12.1 in Jackson [1] he states that it is obvious that the Lorentz force equations are gauge invarient.

\begin{aligned}\frac{d \mathbf{p}}{dt} &= e \left( \mathbf{E} + \frac{\mathbf{u}}{c} \times \mathbf{B} \right) \\ \frac{d E}{dt} &= e \mathbf{u} \cdot \mathbf{E} \end{aligned} \quad\quad\quad(1)

Since I didn’t remember what Gauge invariance was, it wasn’t so obvious. But if I looking ahead to one of the problem 12.2 on this invariance we have a Gauge transformation defined in four vector form as

\begin{aligned}A^\alpha \rightarrow A^\alpha + \partial^\alpha \psi\end{aligned} \quad\quad\quad(3)

In vector form with A = \gamma_\alpha A^\alpha, this gauge transformation can be written

\begin{aligned}A \rightarrow A + \nabla \psi\end{aligned} \quad\quad\quad(4)

so this is really a statement that we add a spacetime gradient of something to the four vector potential. Given this, how does the field transform?

\begin{aligned}F &= \nabla \wedge A \\ &\rightarrow \nabla \wedge (A + \nabla \psi) \\ &= F + \nabla \wedge \nabla \psi\end{aligned}

But \nabla \wedge \nabla \psi = 0 (assuming partials are interchangable) so the field is invariant regardless of whether we are talking about the Lorentz force

\begin{aligned}\nabla F = J/\epsilon_0 c\end{aligned} \quad\quad\quad(5)

or the field equations themselves

\begin{aligned}\frac{dp}{d\tau} = e F \cdot v/c\end{aligned} \quad\quad\quad(6)

So, once you know the definition of the gauge transformation in four vector form, yes this justifiably obvious, however, to anybody who is not familiar with Geometric Algebra, perhaps this is still not so obvious. How does this translate to the more common place tensor or space time vector notations? The tensor four vector translation is the easier of the two, and there we have

\begin{aligned}F^{\alpha\beta} &= \partial^\alpha A^\beta -\partial^\beta A^\alpha \\ &\rightarrow \partial^\alpha (A^\beta + \partial^\beta \psi) -\partial^\beta (A^\alpha + \partial^\alpha \psi) \\ &= F^{\alpha\beta} + \partial^\alpha \partial^\beta \psi -\partial^\beta \partial^\alpha \psi \\ \end{aligned}

As required for \nabla \wedge \nabla \psi = 0 interchange of partials means the field components F^{\alpha\beta} are unchanged by adding this gradient. Finally, in plain old spatial vector form, how is this gauge invariance expressed?

In components we have

\begin{aligned}A^0 &\rightarrow A^0 + \partial^0 \psi = \phi + \frac{1}{{c}}\frac{\partial \psi}{\partial t} \\ A^k &\rightarrow A^k + \partial^k \psi = A^k - \frac{\partial \psi}{\partial x^k}\end{aligned} \quad\quad\quad(7)

This last in vector form is \mathbf{A} \rightarrow \mathbf{A} - \boldsymbol{\nabla} \psi, where the sign inversion comes from \partial^k = -\partial_k = -\partial/\partial x^k, assuming a +--- metric.

We want to apply this to the electric and magnetic field components

\begin{aligned}\mathbf{E} &= -\boldsymbol{\nabla} \phi - \frac{1}{{c}}\frac{\partial \mathbf{A}}{\partial t} \\ \mathbf{B} &= \boldsymbol{\nabla} \times \mathbf{A}\end{aligned} \quad\quad\quad(9)

The electric field transforms as

\begin{aligned}\mathbf{E} &\rightarrow -\boldsymbol{\nabla} \left( \phi + \frac{1}{{c}}\frac{\partial \psi}{\partial t}\right) - \frac{1}{{c}}\frac{\partial }{\partial t} \left( \mathbf{A} - \boldsymbol{\nabla} \psi \right) \\ &= \mathbf{E} -\frac{1}{{c}} \boldsymbol{\nabla} \frac{\partial \psi}{\partial t} + \frac{1}{{c}}\frac{\partial }{\partial t} \boldsymbol{\nabla} \psi \end{aligned}

With partial interchange this is just \mathbf{E}. For the magnetic field we have

\begin{aligned}\mathbf{B} &\rightarrow \boldsymbol{\nabla} \times \left( \mathbf{A} - \boldsymbol{\nabla} \psi \right) \\ &= \mathbf{B}  - \boldsymbol{\nabla} \times \boldsymbol{\nabla} \psi \end{aligned}

Again since the partials interchange we have \boldsymbol{\nabla} \times \boldsymbol{\nabla} \psi = 0, so this is just the magnetic field.

Alright. Worked this in three different ways, so now I can say its obvious.

References

[1] JD Jackson. Classical Electrodynamics Wiley. 2nd edition, 1975.

Posted in Math and Physics Learning. | Tagged: , , , , | Leave a Comment »