Peeter Joot's (OLD) Blog.

Math, physics, perl, and programming obscurity.

Posts Tagged ‘Fermi-Dirac function’

A final pre-exam update of my notes compilation for ‘PHY452H1S Basic Statistical Mechanics’, Taught by Prof. Arun Paramekanti

Posted by peeterjoot on April 22, 2013

Here’s my third update of my notes compilation for this course, including all of the following:

April 21, 2013 Fermi function expansion for thermodynamic quantities

April 20, 2013 Relativistic Fermi Gas

April 10, 2013 Non integral binomial coefficient

April 10, 2013 energy distribution around mean energy

April 09, 2013 Velocity volume element to momentum volume element

April 04, 2013 Phonon modes

April 03, 2013 BEC and phonons

April 03, 2013 Max entropy, fugacity, and Fermi gas

April 02, 2013 Bosons

April 02, 2013 Relativisitic density of states

March 28, 2013 Bosons

plus everything detailed in the description of my previous update and before.

Posted in Math and Physics Learning. | Tagged: , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , | 1 Comment »

Fermi-Dirac function expansion for thermodynamic quantities

Posted by peeterjoot on April 21, 2013

[Click here for a PDF of this post with nicer formatting (especially if my latex to wordpress script has left FORMULA DOES NOT PARSE errors.)]

In section 8.1 of [1] are some Fermi-Dirac \index{Fermi-Dirac function} expansions for P, N, and U. Let’s work through these in detail.

Our starting point is the relations

\begin{aligned}P V \beta = \ln Z_{\mathrm{G}} = \sum \ln \left( 1 + z e^{-\beta \epsilon}  \right)\end{aligned} \hspace{\stretch{1}}(1.0.1a)

\begin{aligned}N = \sum \frac{1}{{ z^{-1} e^{\beta \epsilon} + 1 }}.\end{aligned} \hspace{\stretch{1}}(1.0.1b)

Recap. Density of states

We’ll employ the 3D non-relativisitic density of states

\begin{aligned}\mathcal{D}(\epsilon) &= \sum_\mathbf{k} \delta(\epsilon - \epsilon_\mathbf{k}) \\ &\sim V \int \frac{d^3 \mathbf{k}}{(2 \pi)^3}\delta(\epsilon - \epsilon_\mathbf{k}) \\ &= \frac{4 \pi V}{(2 \pi)^3}\int dk k^2 \delta\left( \epsilon - \frac{\hbar^2 k^2}{2 m}  \right) \\ &= \frac{4 \pi V}{(2 \pi)^3}\int dk k^2 \frac{   \delta\left( k - \sqrt{2 m \epsilon}/\hbar  \right)}{    \frac{\hbar^2}{m}    \frac{\sqrt{2 m \epsilon}}{\hbar}} \\ &= \frac{2 V}{(2 \pi)^2 }\frac{m}{\hbar^2}\sqrt{\frac{2 m \epsilon}{\hbar^2}},\end{aligned} \hspace{\stretch{1}}(1.0.1b)

or

\begin{aligned}\boxed{\mathcal{D}(\epsilon)=\frac{V}{(2 \pi)^2 }\left( \frac{2 m}{\hbar^2}  \right)^{3/2}\epsilon^{1/2}.}\end{aligned} \hspace{\stretch{1}}(1.0.1b)

Density

Now let’s make our integral approximation of the sum for N. That is

\begin{aligned}N &= g \int d\epsilon \mathcal{D}(\epsilon) \frac{1}{{ z^{-1} e^{\beta \epsilon} + 1 }} \\ &= g \frac{V}{(2 \pi)^2 }\left( \frac{2 m}{\hbar^2}  \right)^{3/2}\int_0^\infty d\epsilon \frac{\epsilon^{1/2}}{ z^{-1} e^{\beta \epsilon} + 1 } \\ &= g \frac{V}{(2 \pi)^2 \beta^{3/2}}\left( \frac{2 m}{\hbar^2}  \right)^{3/2}\int_0^\infty du \frac{u^{1/2}}{ z^{-1} e^{u} + 1 } \\ &= g \frac{V}{(2 \pi)^2 \beta^{3/2}}\left( \frac{2 m}{\hbar^2}  \right)^{3/2}\Gamma(3/2) f_{3/2}(z) \\ &= g \frac{V}{(2 \pi)^2 \beta^{3/2}}\frac{\left( 2 m k_{\mathrm{B}} T  \right)^{3/2}}{\hbar^3}\frac{1}{{2}} \sqrt{\pi}f_{3/2}(z)\\ &= g V \not{{2}} \pi\frac{\left( 2 m k_{\mathrm{B}} T  \right)^{3/2}}{h^3}\frac{1}{{\not{{2}}}} \sqrt{\pi}f_{3/2}(z),\end{aligned} \hspace{\stretch{1}}(1.0.1b)

or

\begin{aligned}\frac{N}{V} = g \frac{\left( 2 \pi m k_{\mathrm{B}} T  \right)^{3/2}}{h^3}f_{3/2}(z).\end{aligned} \hspace{\stretch{1}}(1.0.5)

With

\begin{aligned}\lambda = \frac{h}{\sqrt{ 2 \pi m k_{\mathrm{B}} T }},\end{aligned} \hspace{\stretch{1}}(1.0.6)

this gives us the desired density result from the text

\begin{aligned}\boxed{\frac{N}{V}=\frac{g}{\lambda^3} f_{3/2}(z).}\end{aligned} \hspace{\stretch{1}}(1.0.7)

Pressure

For the pressure, we can do the same, but have to integrate by parts

\begin{aligned}P V \beta &= g \sum \ln \left( 1 + z e^{-\beta \epsilon}  \right) \\ &\sim g \frac{V}{(2 \pi)^2 }\left( \frac{2 m}{\hbar^2}  \right)^{3/2}\int_0^\infty d\epsilon \epsilon^{1/2} \ln \left( 1 + z e^{-\beta \epsilon}  \right) \\ &= - g \frac{V}{(2 \pi)^2 }\left( \frac{2 m}{\hbar^2}  \right)^{3/2}\int_0^\infty d\epsilon \frac{2}{3} \epsilon^{3/2} \frac{-\beta z e^{-\beta \epsilon} }{ 1 + z e^{-\beta \epsilon} } \\ &= g\frac{V}{(2 \pi)^2 }\left( \frac{2 m}{\hbar^2}  \right)^{3/2}\frac{2}{3} \frac{1}{{\beta^{3/2}}}\int_0^\infty dx\frac{x^{3/2}}{z^{-1} e^{x} + 1 } \\ &= g\frac{2}{3} 2 \pi V\frac{\left( 2 m k_{\mathrm{B}} T \right)^{3/2}}{h^3 }\Gamma(5/2)f_{5/2}(z) \\ &= g\frac{2}{3} 2 \pi V\frac{\left( 2 m k_{\mathrm{B}} T \right)^{3/2}}{h^3 }\frac{3}{2} \frac{1}{2} \sqrt{\pi}f_{5/2}(z) \\ &= g V\frac{\left( 2 \pi m k_{\mathrm{B}} T \right)^{3/2}}{h^3 }f_{5/2}(z),\end{aligned} \hspace{\stretch{1}}(1.0.7)

or

\begin{aligned}\boxed{P \beta = \frac{g}{\lambda^3} f_{5/2}(z).}\end{aligned} \hspace{\stretch{1}}(1.0.9)

Energy

The average energy is the last thermodynamic quantity to come very easily. We have

\begin{aligned}U &= - \frac{\partial {}}{\partial {\beta}} \ln Z_{\mathrm{G}} \\ &= - \frac{\partial {T}}{\partial {\beta}} \frac{\partial {}}{\partial {T}} \ln Z_{\mathrm{G}} \\ &= - \frac{\partial {(1/k_{\mathrm{B}} T)}}{\partial {\beta}} \frac{\partial {}}{\partial {T}} P V \beta \\ &= \frac{1}{{k_{\mathrm{B}} \beta^2}}\frac{\partial {}}{\partial {T}} \frac{g V}{\lambda^3} f_{5/2}(z) \\ &= g V k_{\mathrm{B}} T^2f_{5/2}(z)\frac{\partial {}}{\partial {T}} \frac{\left( 2 \pi m k_{\mathrm{B}} T  \right)^{3/2}}{h^3} \\ &= \frac{3}{2} \frac{g V k_{\mathrm{B}} T}{\lambda^3}f_{5/2}(z).\end{aligned} \hspace{\stretch{1}}(1.0.9)

From eq. 1.0.7, we have

\begin{aligned}\frac{g V}{\lambda^3} = \frac{N}{f_{3/2}(z) },\end{aligned} \hspace{\stretch{1}}(1.0.11)

so the energy takes the form

\begin{aligned}\boxed{U = \frac{3}{2} N k_{\mathrm{B}} T \frac{f_{5/2}(z)}{f_{3/2}(z) }.}\end{aligned} \hspace{\stretch{1}}(1.0.11)

We can compare this to the ratio of pressure to density

\begin{aligned}\frac{P \beta}{n} = \frac{f_{5/2}(z)}{f_{3/2}(z) },\end{aligned} \hspace{\stretch{1}}(1.0.11)

to find

\begin{aligned}U= \frac{3}{2} N k_{\mathrm{B}} T \frac{P V \beta}{N}= \frac{3}{2} P V,\end{aligned} \hspace{\stretch{1}}(1.0.11)

or

\begin{aligned}\boxed{P V = \frac{2}{3} U.}\end{aligned} \hspace{\stretch{1}}(1.0.11)

References

[1] RK Pathria. Statistical mechanics. Butterworth Heinemann, Oxford, UK, 1996.

Posted in Math and Physics Learning. | Tagged: , , , , , , , , , | Leave a Comment »