Peeter Joot's (OLD) Blog.

Math, physics, perl, and programming obscurity.

Posts Tagged ‘energy-momentum’

Fourier transform solutions and associated energy and momentum for the homogeneous Maxwell equation. (rework once more)

Posted by peeterjoot on December 29, 2009

[Click here for a PDF of this post with nicer formatting]. Note that this PDF file is formatted in a wide-for-screen layout that is probably not good for printing.

These notes build on and replace those formerly posted in Energy and momentum for assumed Fourier transform solutions to the homogeneous Maxwell equation.

Motivation and notation.

In Electrodynamic field energy for vacuum (reworked) [1], building on Energy and momentum for Complex electric and magnetic field phasors [2], a derivation for the energy and momentum density was derived for an assumed Fourier series solution to the homogeneous Maxwell’s equation. Here we move to the continuous case examining Fourier transform solutions and the associated energy and momentum density.

A complex (phasor) representation is implied, so taking real parts when all is said and done is required of the fields. For the energy momentum tensor the Geometric Algebra form, modified for complex fields, is used

\begin{aligned}T(a) = -\frac{\epsilon_0}{2} \text{Real} \Bigl( {{F}}^{*} a F \Bigr).\end{aligned} \hspace{\stretch{1}}(1.1)

The assumed four vector potential will be written

\begin{aligned}A(\mathbf{x}, t) = A^\mu(\mathbf{x}, t) \gamma_\mu = \frac{1}{{(\sqrt{2 \pi})^3}} \int A(\mathbf{k}, t) e^{i \mathbf{k} \cdot \mathbf{x} } d^3 \mathbf{k}.\end{aligned} \hspace{\stretch{1}}(1.2)

Subject to the requirement that A is a solution of Maxwell’s equation

\begin{aligned}\nabla (\nabla \wedge A) = 0.\end{aligned} \hspace{\stretch{1}}(1.3)

To avoid latex hell, no special notation will be used for the Fourier coefficients,

\begin{aligned}A(\mathbf{k}, t) = \frac{1}{{(\sqrt{2 \pi})^3}} \int A(\mathbf{x}, t) e^{-i \mathbf{k} \cdot \mathbf{x} } d^3 \mathbf{x}.\end{aligned} \hspace{\stretch{1}}(1.4)

When convenient and unambiguous, this (\mathbf{k},t) dependence will be implied.

Having picked a time and space representation for the field, it will be natural to express both the four potential and the gradient as scalar plus spatial vector, instead of using the Dirac basis. For the gradient this is

\begin{aligned}\nabla &= \gamma^\mu \partial_\mu = (\partial_0 - \boldsymbol{\nabla}) \gamma_0 = \gamma_0 (\partial_0 + \boldsymbol{\nabla}),\end{aligned} \hspace{\stretch{1}}(1.5)

and for the four potential (or the Fourier transform functions), this is

\begin{aligned}A &= \gamma_\mu A^\mu = (\phi + \mathbf{A}) \gamma_0 = \gamma_0 (\phi - \mathbf{A}).\end{aligned} \hspace{\stretch{1}}(1.6)

Setup

The field bivector F = \nabla \wedge A is required for the energy momentum tensor. This is

\begin{aligned}\nabla \wedge A&= \frac{1}{{2}}\left( \stackrel{ \rightarrow }{\nabla} A - A \stackrel{ \leftarrow }{\nabla} \right) \\ &= \frac{1}{{2}}\left( (\stackrel{ \rightarrow }{\partial}_0 - \stackrel{ \rightarrow }{\boldsymbol{\nabla}}) \gamma_0 \gamma_0 (\phi - \mathbf{A})-(\phi + \mathbf{A}) \gamma_0 \gamma_0 (\stackrel{ \leftarrow }{\partial}_0 + \stackrel{ \leftarrow }{\boldsymbol{\nabla}})\right) \\ &= -\boldsymbol{\nabla} \phi -\partial_0 \mathbf{A} + \frac{1}{{2}}(\stackrel{ \rightarrow }{\boldsymbol{\nabla}} \mathbf{A} - \mathbf{A} \stackrel{ \leftarrow }{\boldsymbol{\nabla}})\end{aligned}

This last term is a spatial curl and the field is then

\begin{aligned}F = -\boldsymbol{\nabla} \phi -\partial_0 \mathbf{A} + \boldsymbol{\nabla} \wedge \mathbf{A}\end{aligned} \hspace{\stretch{1}}(2.7)

Applied to the Fourier representation this is

\begin{aligned}F =\frac{1}{{(\sqrt{2 \pi})^3}} \int\left(- \frac{1}{c} \dot{\mathbf{A}}- i \mathbf{k} \phi+ i \mathbf{k} \wedge \mathbf{A}\right)e^{i \mathbf{k} \cdot \mathbf{x} } d^3 \mathbf{k}.\end{aligned} \hspace{\stretch{1}}(2.8)

It is only the real parts of this that we are actually interested in, unless physical meaning can be assigned to the complete complex vector field.

Constraints supplied by Maxwell’s equation.

A Fourier transform solution of Maxwell’s vacuum equation \nabla F = 0 has been assumed. Having expressed the Faraday bivector in terms of spatial vector quantities, it is more convenient to do this back substitution into after pre-multiplying Maxwell’s equation by \gamma_0, namely

\begin{aligned}0&= \gamma_0 \nabla F \\ &= (\partial_0 + \boldsymbol{\nabla}) F.\end{aligned} \hspace{\stretch{1}}(3.9)

Applied to the spatially decomposed field as specified in (2.7), this is

\begin{aligned}0&=-\partial_0 \boldsymbol{\nabla} \phi-\partial_{00} \mathbf{A}+ \partial_0 \boldsymbol{\nabla} \wedge \mathbf{A}-\boldsymbol{\nabla}^2 \phi- \boldsymbol{\nabla} \partial_0 \mathbf{A}+ \boldsymbol{\nabla} \cdot (\boldsymbol{\nabla} \wedge \mathbf{A} ) \\ &=- \partial_0 \boldsymbol{\nabla} \phi - \boldsymbol{\nabla}^2 \phi- \partial_{00} \mathbf{A}- \boldsymbol{\nabla} \cdot \partial_0 \mathbf{A}+ \boldsymbol{\nabla}^2 \mathbf{A} - \boldsymbol{\nabla} (\boldsymbol{\nabla} \cdot \mathbf{A} ) \\ \end{aligned}

All grades of this equation must simultaneously equal zero, and the bivector grades have canceled (assuming commuting space and time partials), leaving two equations of constraint for the system

\begin{aligned}0 &=\boldsymbol{\nabla}^2 \phi + \boldsymbol{\nabla} \cdot \partial_0 \mathbf{A}\end{aligned} \hspace{\stretch{1}}(3.11)

\begin{aligned}0 &=\partial_{00} \mathbf{A} - \boldsymbol{\nabla}^2 \mathbf{A}+ \boldsymbol{\nabla} \partial_0 \phi + \boldsymbol{\nabla} ( \boldsymbol{\nabla} \cdot \mathbf{A} )\end{aligned} \hspace{\stretch{1}}(3.12)

It is immediately evident that a gauge transformation could be immediately helpful to simplify things. In [3] the gauge choice \boldsymbol{\nabla} \cdot \mathbf{A} = 0 is used. From (3.11) this implies that \boldsymbol{\nabla}^2 \phi = 0. Bohm argues that for this current and charge free case this implies \phi = 0, but he also has a periodicity constraint. Without a periodicity constraint it is easy to manufacture non-zero counterexamples. One is a linear function in the space and time coordinates

\begin{aligned}\phi = p x + q y + r z + s t\end{aligned} \hspace{\stretch{1}}(3.13)

This is a valid scalar potential provided that the wave equation for the vector potential is also a solution. We can however, force \phi = 0 by making the transformation A^\mu \rightarrow A^\mu + \partial^\mu \psi, which in non-covariant notation is

\begin{aligned}\phi &\rightarrow \phi + \frac{1}{c} \partial_t \psi \\ \mathbf{A} &\rightarrow \phi - \boldsymbol{\nabla} \psi\end{aligned} \hspace{\stretch{1}}(3.14)

If the transformed field \phi' = \phi + \partial_t \psi/c can be forced to zero, then the complexity of the associated Maxwell equations are reduced. In particular, antidifferentiation of \phi = -(1/c) \partial_t \psi, yields

\begin{aligned}\psi(\mathbf{x},t) = \psi(\mathbf{x}, 0) - c \int_{\tau=0}^t \phi(\mathbf{x}, \tau) d\tau.\end{aligned} \hspace{\stretch{1}}(3.16)

Dropping primes, the transformed Maxwell equations now take the form

\begin{aligned}0 &= \partial_t( \boldsymbol{\nabla} \cdot \mathbf{A} )\end{aligned} \hspace{\stretch{1}}(3.17)

\begin{aligned}0 &=\partial_{00} \mathbf{A} - \boldsymbol{\nabla}^2 \mathbf{A} + \boldsymbol{\nabla} (\boldsymbol{\nabla} \cdot \mathbf{A} ).\end{aligned} \hspace{\stretch{1}}(3.18)

There are two classes of solutions that stand out for these equations. If the vector potential is constant in time \mathbf{A}(\mathbf{x},t) = \mathbf{A}(\mathbf{x}), Maxwell’s equations are reduced to the single equation

\begin{aligned}0&= - \boldsymbol{\nabla}^2 \mathbf{A} + \boldsymbol{\nabla} (\boldsymbol{\nabla} \cdot \mathbf{A} ).\end{aligned} \hspace{\stretch{1}}(3.19)

Observe that a gradient can be factored out of this equation

\begin{aligned}- \boldsymbol{\nabla}^2 \mathbf{A} + \boldsymbol{\nabla} (\boldsymbol{\nabla} \cdot \mathbf{A} )&=\boldsymbol{\nabla} (-\boldsymbol{\nabla} \mathbf{A} + \boldsymbol{\nabla} \cdot \mathbf{A} ) \\ &=-\boldsymbol{\nabla} (\boldsymbol{\nabla} \wedge \mathbf{A}).\end{aligned}

The solutions are then those \mathbf{A}s that satisfy both

\begin{aligned}0 &= \partial_t \mathbf{A} \\ 0 &= \boldsymbol{\nabla} (\boldsymbol{\nabla} \wedge \mathbf{A}).\end{aligned} \hspace{\stretch{1}}(3.20)

In particular any non-time dependent potential \mathbf{A} with constant curl provides a solution to Maxwell’s equations. There may be other solutions to (3.19) too that are more general. Returning to (3.17) a second way to satisfy these equations stands out. Instead of requiring of \mathbf{A} constant curl, constant divergence with respect to the time partial eliminates (3.17). The simplest resulting equations are those for which the divergence is a constant in time and space (such as zero). The solution set are then spanned by the vectors \mathbf{A} for which

\begin{aligned}\text{constant} &= \boldsymbol{\nabla} \cdot \mathbf{A} \end{aligned} \hspace{\stretch{1}}(3.22)

\begin{aligned}0 &= \frac{1}{{c^2}} \partial_{tt} \mathbf{A} - \boldsymbol{\nabla}^2 \mathbf{A}.\end{aligned} \hspace{\stretch{1}}(3.23)

Any \mathbf{A} that both has constant divergence and satisfies the wave equation will via (2.7) then produce a solution to Maxwell’s equation.

Maxwell equation constraints applied to the assumed Fourier solutions.

Let’s consider Maxwell’s equations in all three forms, (3.11), (3.20), and (3.22) and apply these constraints to the assumed Fourier solution.

In all cases the starting point is a pair of Fourier transform relationships, where the Fourier transforms are the functions to be determined

\begin{aligned}\phi(\mathbf{x}, t) &= (2 \pi)^{-3/2} \int \phi(\mathbf{k}, t) e^{i \mathbf{k} \cdot \mathbf{x} } d^3 \mathbf{k} \end{aligned} \hspace{\stretch{1}}(4.24)

\begin{aligned}\mathbf{A}(\mathbf{x}, t) &= (2 \pi)^{-3/2} \int \mathbf{A}(\mathbf{k}, t) e^{i \mathbf{k} \cdot \mathbf{x} } d^3 \mathbf{k} \end{aligned} \hspace{\stretch{1}}(4.25)

Case I. Constant time vector potential. Scalar potential eliminated by gauge transformation.

From (4.24) we require

\begin{aligned}0 = (2 \pi)^{-3/2} \int \partial_t \mathbf{A}(\mathbf{k}, t) e^{i \mathbf{k} \cdot \mathbf{x} } d^3 \mathbf{k}.\end{aligned} \hspace{\stretch{1}}(4.26)

So the Fourier transform also cannot have any time dependence, and we have

\begin{aligned}\mathbf{A}(\mathbf{x}, t) &= (2 \pi)^{-3/2} \int \mathbf{A}(\mathbf{k}) e^{i \mathbf{k} \cdot \mathbf{x} } d^3 \mathbf{k} \end{aligned} \hspace{\stretch{1}}(4.27)

What is the curl of this? Temporarily falling back to coordinates is easiest for this calculation

\begin{aligned}\boldsymbol{\nabla} \wedge \mathbf{A}(\mathbf{k}) e^{i\mathbf{k} \cdot \mathbf{x}}&=\sigma_m \partial_m \wedge \sigma_n A^n(\mathbf{k}) e^{i \mathbf{x} \cdot \mathbf{x}} \\ &=\sigma_m \wedge \sigma_n A^n(\mathbf{k}) i k^m e^{i \mathbf{x} \cdot \mathbf{x}} \\ &=i\mathbf{k} \wedge \mathbf{A}(\mathbf{k}) e^{i \mathbf{x} \cdot \mathbf{x}} \\ \end{aligned}

This gives

\begin{aligned}\boldsymbol{\nabla} \wedge \mathbf{A}(\mathbf{x}, t) &= (2 \pi)^{-3/2} \int i \mathbf{k} \wedge \mathbf{A}(\mathbf{k}) e^{i \mathbf{k} \cdot \mathbf{x} } d^3 \mathbf{k}.\end{aligned} \hspace{\stretch{1}}(4.28)

We want to equate the divergence of this to zero. Neglecting the integral and constant factor this requires

\begin{aligned}0 &= \boldsymbol{\nabla} \cdot \left( i \mathbf{k} \wedge \mathbf{A} e^{i\mathbf{k} \cdot \mathbf{x}} \right) \\ &= {\left\langle{{ \sigma_m \partial_m i (\mathbf{k} \wedge \mathbf{A}) e^{i\mathbf{k} \cdot \mathbf{x}} }}\right\rangle}_{1} \\ &= -{\left\langle{{ \sigma_m (\mathbf{k} \wedge \mathbf{A}) k^m e^{i\mathbf{k} \cdot \mathbf{x}} }}\right\rangle}_{1} \\ &= -\mathbf{k} \cdot (\mathbf{k} \wedge \mathbf{A}) e^{i\mathbf{k} \cdot \mathbf{x}} \\ \end{aligned}

Requiring that the plane spanned by \mathbf{k} and \mathbf{A}(\mathbf{k}) be perpendicular to \mathbf{k} implies that \mathbf{A} \propto \mathbf{k}. The solution set is then completely described by functions of the form

\begin{aligned}\mathbf{A}(\mathbf{x}, t) &= (2 \pi)^{-3/2} \int \mathbf{k} \psi(\mathbf{k}) e^{i \mathbf{k} \cdot \mathbf{x} } d^3 \mathbf{k},\end{aligned} \hspace{\stretch{1}}(4.29)

where \psi(\mathbf{k}) is an arbitrary scalar valued function. This is however, an extremely uninteresting solution since the curl is uniformly zero

\begin{aligned}F &= \boldsymbol{\nabla} \wedge \mathbf{A} \\ &= (2 \pi)^{-3/2} \int (i \mathbf{k}) \wedge \mathbf{k} \psi(\mathbf{k}) e^{i \mathbf{k} \cdot \mathbf{x} } d^3 \mathbf{k}.\end{aligned}

Since \mathbf{k} \wedge \mathbf{k} = 0, when all is said and done the \phi = 0, \partial_t \mathbf{A} = 0 case appears to have no non-trivial (zero) solutions. Moving on, …

Case II. Constant vector potential divergence. Scalar potential eliminated by gauge transformation.

Next in the order of complexity is consideration of the case (3.22). Here we also have \phi = 0, eliminated by gauge transformation, and are looking for solutions with the constraint

\begin{aligned}\text{constant} &= \boldsymbol{\nabla} \cdot \mathbf{A}(\mathbf{x}, t) \\ &= (2 \pi)^{-3/2} \int i \mathbf{k} \cdot \mathbf{A}(\mathbf{k}, t) e^{i \mathbf{k} \cdot \mathbf{x} } d^3 \mathbf{k}.\end{aligned}

How can this constraint be enforced? The only obvious way is a requirement for \mathbf{k} \cdot \mathbf{A}(\mathbf{k}, t) to be zero for all (\mathbf{k},t), meaning that our to be determined Fourier transform coefficients are required to be perpendicular to the wave number vector parameters at all times.

The remainder of Maxwell’s equations, (3.23) impose the addition constraint on the Fourier transform \mathbf{A}(\mathbf{k},t)

\begin{aligned}0 &= (2 \pi)^{-3/2} \int \left( \frac{1}{{c^2}} \partial_{tt} \mathbf{A}(\mathbf{k}, t) - i^2 \mathbf{k}^2 \mathbf{A}(\mathbf{k}, t)\right) e^{i \mathbf{k} \cdot \mathbf{x} } d^3 \mathbf{k}.\end{aligned} \hspace{\stretch{1}}(4.30)

For zero equality for all \mathbf{x} it appears that we require the Fourier transforms \mathbf{A}(\mathbf{k}) to be harmonic in time

\begin{aligned}\partial_{tt} \mathbf{A}(\mathbf{k}, t) = - c^2 \mathbf{k}^2 \mathbf{A}(\mathbf{k}, t).\end{aligned} \hspace{\stretch{1}}(4.31)

This has the familiar exponential solutions

\begin{aligned}\mathbf{A}(\mathbf{k}, t) = \mathbf{A}_{\pm}(\mathbf{k}) e^{ \pm i c {\left\lvert{\mathbf{k}}\right\rvert} t },\end{aligned} \hspace{\stretch{1}}(4.32)

also subject to a requirement that \mathbf{k} \cdot \mathbf{A}(\mathbf{k}) = 0. Our field, where the \mathbf{A}_{\pm}(\mathbf{k}) are to be determined by initial time conditions, is by (2.7) of the form

\begin{aligned}F(\mathbf{x}, t)= \text{Real} \frac{i}{(\sqrt{2\pi})^3} \int \Bigl( -{\left\lvert{\mathbf{k}}\right\rvert} \mathbf{A}_{+}(\mathbf{k}) + \mathbf{k} \wedge \mathbf{A}_{+}(\mathbf{k}) \Bigr) \exp(i \mathbf{k} \cdot \mathbf{x} + i c {\left\lvert{\mathbf{k}}\right\rvert} t) d^3 \mathbf{k}+ \text{Real} \frac{i}{(\sqrt{2\pi})^3} \int \Bigl( {\left\lvert{\mathbf{k}}\right\rvert} \mathbf{A}_{-}(\mathbf{k}) + \mathbf{k} \wedge \mathbf{A}_{-}(\mathbf{k}) \Bigr) \exp(i \mathbf{k} \cdot \mathbf{x} - i c {\left\lvert{\mathbf{k}}\right\rvert} t) d^3 \mathbf{k}.\end{aligned} \hspace{\stretch{1}}(4.33)

Since 0 = \mathbf{k} \cdot \mathbf{A}_{\pm}(\mathbf{k}), we have \mathbf{k} \wedge \mathbf{A}_{\pm}(\mathbf{k}) = \mathbf{k} \mathbf{A}_{\pm}. This allows for factoring out of {\left\lvert{\mathbf{k}}\right\rvert}. The structure of the solution is not changed by incorporating the i (2\pi)^{-3/2} {\left\lvert{\mathbf{k}}\right\rvert} factors into \mathbf{A}_{\pm}, leaving the field having the general form

\begin{aligned}F(\mathbf{x}, t)= \text{Real} \int ( \hat{\mathbf{k}} - 1 ) \mathbf{A}_{+}(\mathbf{k}) \exp(i \mathbf{k} \cdot \mathbf{x} + i c {\left\lvert{\mathbf{k}}\right\rvert} t) d^3 \mathbf{k}+ \text{Real} \int ( \hat{\mathbf{k}} + 1 ) \mathbf{A}_{-}(\mathbf{k}) \exp(i \mathbf{k} \cdot \mathbf{x} - i c {\left\lvert{\mathbf{k}}\right\rvert} t) d^3 \mathbf{k}.\end{aligned} \hspace{\stretch{1}}(4.34)

The original meaning of \mathbf{A}_{\pm} as Fourier transforms of the vector potential is obscured by the tidy up change to absorb {\left\lvert{\mathbf{k}}\right\rvert}, but the geometry of the solution is clearer this way.

It is also particularly straightforward to confirm that \gamma_0 \nabla F = 0 separately for either half of (4.34).

Case III. Non-zero scalar potential. No gauge transformation.

Now lets work from (3.11). In particular, a divergence operation can be factored from (3.11), for

\begin{aligned}0 = \boldsymbol{\nabla} \cdot (\boldsymbol{\nabla} \phi + \partial_0 \mathbf{A}).\end{aligned} \hspace{\stretch{1}}(4.35)

Right off the top, there is a requirement for

\begin{aligned}\text{constant} = \boldsymbol{\nabla} \phi + \partial_0 \mathbf{A}.\end{aligned} \hspace{\stretch{1}}(4.36)

In terms of the Fourier transforms this is

\begin{aligned}\text{constant} = \frac{1}{{(\sqrt{2 \pi})^3}} \int \Bigl(i \mathbf{k} \phi(\mathbf{k}, t) + \frac{1}{c} \partial_t \mathbf{A}(\mathbf{k}, t)\Bigr)e^{i \mathbf{k} \cdot \mathbf{x} } d^3 \mathbf{k}.\end{aligned} \hspace{\stretch{1}}(4.37)

Are there any ways for this to equal a constant for all \mathbf{x} without requiring that constant to be zero? Assuming no for now, and that this constant must be zero, this implies a coupling between the \phi and \mathbf{A} Fourier transforms of the form

\begin{aligned}\phi(\mathbf{k}, t) = -\frac{1}{{i c \mathbf{k}}} \partial_t \mathbf{A}(\mathbf{k}, t)\end{aligned} \hspace{\stretch{1}}(4.38)

A secondary implication is that \partial_t \mathbf{A}(\mathbf{k}, t) \propto \mathbf{k} or else \phi(\mathbf{k}, t) is not a scalar. We had a transverse solution by requiring via gauge transformation that \phi = 0, and here we have instead the vector potential in the propagation direction.

A secondary confirmation that this is a required coupling between the scalar and vector potential can be had by evaluating the divergence equation of (4.35)

\begin{aligned}0 = \frac{1}{{(\sqrt{2 \pi})^3}} \int \Bigl(- \mathbf{k}^2 \phi(\mathbf{k}, t) + \frac{i\mathbf{k}}{c} \cdot \partial_t \mathbf{A}(\mathbf{k}, t)\Bigr)e^{i \mathbf{k} \cdot \mathbf{x} } d^3 \mathbf{k}.\end{aligned} \hspace{\stretch{1}}(4.39)

Rearranging this also produces (4.38). We want to now substitute this relationship into (3.12).

Starting with just the \partial_0 \phi - \boldsymbol{\nabla} \cdot \mathbf{A} part we have

\begin{aligned}\partial_0 \phi + \boldsymbol{\nabla} \cdot \mathbf{A}&=\frac{1}{{(\sqrt{2 \pi})^3}} \int \Bigl(\frac{i}{c^2 \mathbf{k}} \partial_{tt} \mathbf{A}(\mathbf{k}, t) + i \mathbf{k} \cdot \mathbf{A}\Bigr)e^{i \mathbf{k} \cdot \mathbf{x} } d^3 \mathbf{k}.\end{aligned} \hspace{\stretch{1}}(4.40)

Taking the gradient of this brings down a factor of i\mathbf{k} for

\begin{aligned}\boldsymbol{\nabla} (\partial_0 \phi + \boldsymbol{\nabla} \cdot \mathbf{A})&=-\frac{1}{{(\sqrt{2 \pi})^3}} \int \Bigl(\frac{1}{c^2} \partial_{tt} \mathbf{A}(\mathbf{k}, t) + \mathbf{k} (\mathbf{k} \cdot \mathbf{A})\Bigr)e^{i \mathbf{k} \cdot \mathbf{x} } d^3 \mathbf{k}.\end{aligned} \hspace{\stretch{1}}(4.41)

(3.12) in its entirety is now

\begin{aligned}0 &=\frac{1}{{(\sqrt{2 \pi})^3}} \int \Bigl(- (i\mathbf{k})^2 \mathbf{A}+ \mathbf{k} (\mathbf{k} \cdot \mathbf{A})\Bigr)e^{i \mathbf{k} \cdot \mathbf{x} } d^3 \mathbf{k}.\end{aligned} \hspace{\stretch{1}}(4.42)

This isn’t terribly pleasant looking. Perhaps going the other direction. We could write

\begin{aligned}\phi = \frac{i}{c \mathbf{k}} \frac{\partial {\mathbf{A}}}{\partial {t}} = \frac{i}{c} \frac{\partial {\psi}}{\partial {t}},\end{aligned} \hspace{\stretch{1}}(4.43)

so that

\begin{aligned}\mathbf{A}(\mathbf{k}, t) = \mathbf{k} \psi(\mathbf{k}, t).\end{aligned} \hspace{\stretch{1}}(4.44)

\begin{aligned}0 &=\frac{1}{{(\sqrt{2 \pi})^3}} \int \Bigl(\frac{1}{{c^2}} \mathbf{k} \psi_{tt}- \boldsymbol{\nabla}^2 \mathbf{k} \psi + \boldsymbol{\nabla} \frac{i}{c^2} \psi_{tt}+\boldsymbol{\nabla}( \boldsymbol{\nabla} \cdot (\mathbf{k} \psi) )\Bigr)e^{i \mathbf{k} \cdot \mathbf{x} } d^3 \mathbf{k} \\ \end{aligned}

Note that the gradients here operate on everything to the right, including and especially the exponential. Each application of the gradient brings down an additional i\mathbf{k} factor, and we have

\begin{aligned}\frac{1}{{(\sqrt{2 \pi})^3}} \int \mathbf{k} \Bigl(\frac{1}{{c^2}} \psi_{tt}- i^2 \mathbf{k}^2 \psi + \frac{i^2}{c^2} \psi_{tt}+i^2 \mathbf{k}^2 \psi \Bigr)e^{i \mathbf{k} \cdot \mathbf{x} } d^3 \mathbf{k}.\end{aligned}

This is identically zero, so we see that this second equation provides no additional information. That is somewhat surprising since there is not a whole lot of constraints supplied by the first equation. The function \psi(\mathbf{k}, t) can be anything. Understanding of this curiosity comes from computation of the Faraday bivector itself. From (2.7), that is

\begin{aligned}F = \frac{1}{{(\sqrt{2 \pi})^3}} \int \Bigl(-i \mathbf{k} \frac{i}{c}\psi_t - \frac{1}{c} \mathbf{k} \psi_t + i \mathbf{k} \wedge \mathbf{k} \psi\Bigr)e^{i \mathbf{k} \cdot \mathbf{x} } d^3 \mathbf{k}.\end{aligned} \hspace{\stretch{1}}(4.45)

All terms cancel, so we see that a non-zero \phi leads to F = 0, as was the case when considering (4.24) (a case that also resulted in \mathbf{A}(\mathbf{k}) \propto \mathbf{k}).

Can this Fourier representation lead to a non-transverse solution to Maxwell’s equation? If so, it is not obvious how.

The energy momentum tensor

The energy momentum tensor is then

\begin{aligned}T(a) &= -\frac{\epsilon_0}{2 (2 \pi)^3} \text{Real} \iint\left(- \frac{1}{c} {{\dot{\mathbf{A}}}}^{*}(\mathbf{k}',t)+ i \mathbf{k}' {{\phi}}^{*}(\mathbf{k}', t)- i \mathbf{k}' \wedge {\mathbf{A}}^{*}(\mathbf{k}', t)\right)a\left(- \frac{1}{c} \dot{\mathbf{A}}(\mathbf{k}, t)- i \mathbf{k} \phi(\mathbf{k}, t)+ i \mathbf{k} \wedge \mathbf{A}(\mathbf{k}, t)\right)e^{i (\mathbf{k} -\mathbf{k}') \cdot \mathbf{x} } d^3 \mathbf{k} d^3 \mathbf{k}'.\end{aligned} \hspace{\stretch{1}}(5.46)

Observing that \gamma_0 commutes with spatial bivectors and anticommutes with spatial vectors, and writing \sigma_\mu = \gamma_\mu \gamma_0, the tensor splits neatly into scalar and spatial vector components

\begin{aligned}T(\gamma_\mu) \cdot \gamma_0 &= \frac{\epsilon_0}{2 (2 \pi)^3} \text{Real} \iint\left\langle{{\left(\frac{1}{c} {{\dot{\mathbf{A}}}}^{*}(\mathbf{k}',t)- i \mathbf{k}' {{\phi}}^{*}(\mathbf{k}', t)+ i \mathbf{k}' \wedge {\mathbf{A}}^{*}(\mathbf{k}', t)\right)\sigma_\mu\left(\frac{1}{c} \dot{\mathbf{A}}(\mathbf{k}, t)+ i \mathbf{k} \phi(\mathbf{k}, t)+ i \mathbf{k} \wedge \mathbf{A}(\mathbf{k}, t)\right)}}\right\rangle e^{i (\mathbf{k} -\mathbf{k}') \cdot \mathbf{x} } d^3 \mathbf{k} d^3 \mathbf{k}' \\ T(\gamma_\mu) \wedge \gamma_0 &= \frac{\epsilon_0}{2 (2 \pi)^3} \text{Real} \iint{\left\langle{{\left(\frac{1}{c} {{\dot{\mathbf{A}}}}^{*}(\mathbf{k}',t)- i \mathbf{k}' {{\phi}}^{*}(\mathbf{k}', t)+ i \mathbf{k}' \wedge {\mathbf{A}}^{*}(\mathbf{k}', t)\right)\sigma_\mu\left(\frac{1}{c} \dot{\mathbf{A}}(\mathbf{k}, t)+ i \mathbf{k} \phi(\mathbf{k}, t)+ i \mathbf{k} \wedge \mathbf{A}(\mathbf{k}, t)\right)}}\right\rangle}_{1}e^{i (\mathbf{k} -\mathbf{k}') \cdot \mathbf{x} } d^3 \mathbf{k} d^3 \mathbf{k}'.\end{aligned} \hspace{\stretch{1}}(5.47)

In particular for \mu = 0, we have

\begin{aligned}H &\equiv T(\gamma_0) \cdot \gamma_0 = \frac{\epsilon_0}{2 (2 \pi)^3} \text{Real} \iint\left(\left(\frac{1}{c} {{\dot{\mathbf{A}}}}^{*}(\mathbf{k}',t)- i \mathbf{k}' {{\phi}}^{*}(\mathbf{k}', t)\right)\cdot\left(\frac{1}{c} \dot{\mathbf{A}}(\mathbf{k}, t)+ i \mathbf{k} \phi(\mathbf{k}, t)\right)- (\mathbf{k}' \wedge {\mathbf{A}}^{*}(\mathbf{k}', t)) \cdot (\mathbf{k} \wedge \mathbf{A}(\mathbf{k}, t))\right)e^{i (\mathbf{k} -\mathbf{k}') \cdot \mathbf{x} } d^3 \mathbf{k} d^3 \mathbf{k}' \\ \mathbf{P} &\equiv T(\gamma_\mu) \wedge \gamma_0 = \frac{\epsilon_0}{2 (2 \pi)^3} \text{Real} \iint\left(i\left(\frac{1}{c} {{\dot{\mathbf{A}}}}^{*}(\mathbf{k}',t)- i \mathbf{k}' {{\phi}}^{*}(\mathbf{k}', t)\right) \cdot\left(\mathbf{k} \wedge \mathbf{A}(\mathbf{k}, t)\right)-i\left(\frac{1}{c} \dot{\mathbf{A}}(\mathbf{k}, t)+ i \mathbf{k} \phi(\mathbf{k}, t)\right)\cdot\left(\mathbf{k}' \wedge {\mathbf{A}}^{*}(\mathbf{k}', t)\right)\right)e^{i (\mathbf{k} -\mathbf{k}') \cdot \mathbf{x} } d^3 \mathbf{k} d^3 \mathbf{k}'.\end{aligned} \hspace{\stretch{1}}(5.49)

Integrating this over all space and identification of the delta function

\begin{aligned}\delta(\mathbf{k}) \equiv \frac{1}{{(2 \pi)^3}} \int e^{i \mathbf{k} \cdot \mathbf{x}} d^3 \mathbf{x},\end{aligned} \hspace{\stretch{1}}(5.51)

reduces the tensor to a single integral in the continuous angular wave number space of \mathbf{k}.

\begin{aligned}\int T(a) d^3 \mathbf{x} &= -\frac{\epsilon_0}{2} \text{Real} \int\left(- \frac{1}{c} {{\dot{\mathbf{A}}}}^{*}+ i \mathbf{k} {{\phi}}^{*}- i \mathbf{k} \wedge {\mathbf{A}}^{*}\right)a\left(- \frac{1}{c} \dot{\mathbf{A}}- i \mathbf{k} \phi+ i \mathbf{k} \wedge \mathbf{A}\right)d^3 \mathbf{k}.\end{aligned} \hspace{\stretch{1}}(5.52)

Or,

\begin{aligned}\int T(\gamma_\mu) \gamma_0 d^3 \mathbf{x} =\frac{\epsilon_0}{2} \text{Real} \int{\left\langle{{\left(\frac{1}{c} {{\dot{\mathbf{A}}}}^{*}- i \mathbf{k} {{\phi}}^{*}+ i \mathbf{k} \wedge {\mathbf{A}}^{*}\right)\sigma_\mu\left(\frac{1}{c} \dot{\mathbf{A}}+ i \mathbf{k} \phi+ i \mathbf{k} \wedge \mathbf{A}\right)}}\right\rangle}_{{0,1}}d^3 \mathbf{k}.\end{aligned} \hspace{\stretch{1}}(5.53)

Multiplying out (5.53) yields for \int H

\begin{aligned}\int H d^3 \mathbf{x} &=\frac{\epsilon_0}{2} \int d^3 \mathbf{k} \left(\frac{1}{{c^2}} {\left\lvert{\dot{\mathbf{A}}}\right\rvert}^2 + \mathbf{k}^2 ({\left\lvert{\phi}\right\rvert}^2 + {\left\lvert{\mathbf{A}}\right\rvert}^2 )- {\left\lvert{\mathbf{k} \cdot \mathbf{A}}\right\rvert}^2+ 2 \frac{\mathbf{k}}{c} \cdot \text{Real}( i {{\phi}}^{*} \dot{\mathbf{A}} )\right)\end{aligned} \hspace{\stretch{1}}(5.54)

Recall that the only non-trivial solution we found for the assumed Fourier transform representation of F was for \phi = 0, \mathbf{k} \cdot \mathbf{A}(\mathbf{k}, t) = 0. Thus we have for the energy density integrated over all space, just

\begin{aligned}\int H d^3 \mathbf{x} &=\frac{\epsilon_0}{2} \int d^3 \mathbf{k} \left(\frac{1}{{c^2}} {\left\lvert{\dot{\mathbf{A}}}\right\rvert}^2 + \mathbf{k}^2 {\left\lvert{\mathbf{A}}\right\rvert}^2 \right).\end{aligned} \hspace{\stretch{1}}(5.55)

Observe that we have the structure of a Harmonic oscillator for the energy of the radiation system. What is the canonical momentum for this system? Will it correspond to the Poynting vector, integrated over all space?

Let’s reduce the vector component of (5.53), after first imposing the \phi=0, and \mathbf{k} \cdot \mathbf{A} = 0 conditions used to above for our harmonic oscillator form energy relationship. This is

\begin{aligned}\int \mathbf{P} d^3 \mathbf{x} &=\frac{\epsilon_0}{2 c} \text{Real} \int d^3 \mathbf{k} \left( i {\mathbf{A}}^{*}_t \cdot (\mathbf{k} \wedge \mathbf{A})+ i (\mathbf{k} \wedge {\mathbf{A}}^{*}) \cdot \mathbf{A}_t\right) \\ &=\frac{\epsilon_0}{2 c} \text{Real} \int d^3 \mathbf{k} \left( -i ({\mathbf{A}}^{*}_t \cdot \mathbf{A}) \mathbf{k}+ i \mathbf{k} ({\mathbf{A}}^{*} \cdot \mathbf{A}_t)\right)\end{aligned}

This is just

\begin{aligned}\int \mathbf{P} d^3 \mathbf{x} &=\frac{\epsilon_0}{c} \text{Real} i \int \mathbf{k} ({\mathbf{A}}^{*} \cdot \mathbf{A}_t) d^3 \mathbf{k}.\end{aligned} \hspace{\stretch{1}}(5.56)

Recall that the Fourier transforms for the transverse propagation case had the form \mathbf{A}(\mathbf{k}, t) = \mathbf{A}_{\pm}(\mathbf{k}) e^{\pm i c {\left\lvert{\mathbf{k}}\right\rvert} t}, where the minus generated the advanced wave, and the plus the receding wave. With substitution of the vector potential for the advanced wave into the energy and momentum results of (5.55) and (5.56) respectively, we have

\begin{aligned}\int H d^3 \mathbf{x}   &= \epsilon_0 \int \mathbf{k}^2 {\left\lvert{\mathbf{A}(\mathbf{k})}\right\rvert}^2 d^3 \mathbf{k} \\ \int \mathbf{P} d^3 \mathbf{x} &= \epsilon_0 \int \hat{\mathbf{k}} \mathbf{k}^2 {\left\lvert{\mathbf{A}(\mathbf{k})}\right\rvert}^2 d^3 \mathbf{k}.\end{aligned} \hspace{\stretch{1}}(5.57)

After a somewhat circuitous route, this has the relativistic symmetry that is expected. In particular the for the complete \mu=0 tensor we have after integration over all space

\begin{aligned}\int T(\gamma_0) \gamma_0 d^3 \mathbf{x} = \epsilon_0 \int (1 + \hat{\mathbf{k}}) \mathbf{k}^2 {\left\lvert{\mathbf{A}(\mathbf{k})}\right\rvert}^2 d^3 \mathbf{k}.\end{aligned} \hspace{\stretch{1}}(5.59)

The receding wave solution would give the same result, but directed as 1 - \hat{\mathbf{k}} instead.

Observe that we also have the four divergence conservation statement that is expected

\begin{aligned}\frac{\partial {}}{\partial {t}} \int H d^3 \mathbf{x} + \boldsymbol{\nabla} \cdot \int c \mathbf{P} d^3 \mathbf{x} &= 0.\end{aligned} \hspace{\stretch{1}}(5.60)

This follows trivially since both the derivatives are zero. If the integration region was to be more specific instead of a 0 + 0 = 0 relationship, we’d have the power flux {\partial {H}}/{\partial {t}} equal in magnitude to the momentum change through a bounding surface. For a more general surface the time and spatial dependencies shouldn’t necessarily vanish, but we should still have this radiation energy momentum conservation.

References

[1] Peeter Joot. Electrodynamic field energy for vacuum. [online]. http://sites.google.com/site/peeterjoot/math2009/fourierMaxVac.pdf.

[2] Peeter Joot. {Energy and momentum for Complex electric and magnetic field phasors.} [online]. http://sites.google.com/site/peeterjoot/math2009/complexFieldEnergy.pdf.

[3] D. Bohm. Quantum Theory. Courier Dover Publications, 1989.

Posted in Math and Physics Learning. | Tagged: , , , , , , | Leave a Comment »

Energy and momentum for assumed Fourier transform solutions to the homogeneous Maxwell equation.

Posted by peeterjoot on December 22, 2009

[Click here for a PDF of this post with nicer formatting]

Motivation and notation.

In Electrodynamic field energy for vacuum (reworked) [1], building on Energy and momentum for Complex electric and magnetic field phasors [2] a derivation for the energy and momentum density was derived for an assumed Fourier series solution to the homogeneous Maxwell’s equation. Here we move to the continuous case examining Fourier transform solutions and the associated energy and momentum density.

A complex (phasor) representation is implied, so taking real parts when all is said and done is required of the fields. For the energy momentum tensor the Geometric Algebra form, modified for complex fields, is used

\begin{aligned}T(a) = -\frac{\epsilon_0}{2} \text{Real} \Bigl( {{F}}^{*} a F \Bigr).\end{aligned} \hspace{\stretch{1}}(1.1)

The assumed four vector potential will be written

\begin{aligned}A(\mathbf{x}, t) = A^\mu(\mathbf{x}, t) \gamma_\mu = \frac{1}{{(\sqrt{2 \pi})^3}} \int A(\mathbf{k}, t) e^{i \mathbf{k} \cdot \mathbf{x} } d^3 \mathbf{k}.\end{aligned} \hspace{\stretch{1}}(1.2)

Subject to the requirement that A is a solution of Maxwell’s equation

\begin{aligned}\nabla (\nabla \wedge A) = 0.\end{aligned} \hspace{\stretch{1}}(1.3)

To avoid latex hell, no special notation will be used for the Fourier coefficients,

\begin{aligned}A(\mathbf{k}, t) = \frac{1}{{(\sqrt{2 \pi})^3}} \int A(\mathbf{x}, t) e^{-i \mathbf{k} \cdot \mathbf{x} } d^3 \mathbf{x}.\end{aligned} \hspace{\stretch{1}}(1.4)

When convenient and unambiguous, this (\mathbf{k},t) dependence will be implied.

Having picked a time and space representation for the field, it will be natural to express both the four potential and the gradient as scalar plus spatial vector, instead of using the Dirac basis. For the gradient this is

\begin{aligned}\nabla &= \gamma^\mu \partial_\mu = (\partial_0 - \boldsymbol{\nabla}) \gamma_0 = \gamma_0 (\partial_0 + \boldsymbol{\nabla}),\end{aligned} \hspace{\stretch{1}}(1.5)

and for the four potential (or the Fourier transform functions), this is

\begin{aligned}A &= \gamma_\mu A^\mu = (\phi + \mathbf{A}) \gamma_0 = \gamma_0 (\phi - \mathbf{A}).\end{aligned} \hspace{\stretch{1}}(1.6)

Setup

The field bivector F = \nabla \wedge A is required for the energy momentum tensor. This is

\begin{aligned}\nabla \wedge A&= \frac{1}{{2}}\left( \stackrel{ \rightarrow }{\nabla} A - A \stackrel{ \leftarrow }{\nabla} \right) \\ &= \frac{1}{{2}}\left( (\stackrel{ \rightarrow }{\partial}_0 - \stackrel{ \rightarrow }{\boldsymbol{\nabla}}) \gamma_0 \gamma_0 (\phi - \mathbf{A})- (\phi + \mathbf{A}) \gamma_0 \gamma_0 (\stackrel{ \leftarrow }{\partial}_0 + \stackrel{ \leftarrow }{\boldsymbol{\nabla}})\right) \\ &= -\boldsymbol{\nabla} \phi -\partial_0 \mathbf{A} + \frac{1}{{2}}(\stackrel{ \rightarrow }{\boldsymbol{\nabla}} \mathbf{A} - \mathbf{A} \stackrel{ \leftarrow }{\boldsymbol{\nabla}}) \end{aligned}

This last term is a spatial curl and the field is then

\begin{aligned}F = -\boldsymbol{\nabla} \phi -\partial_0 \mathbf{A} + \boldsymbol{\nabla} \wedge \mathbf{A} \end{aligned} \hspace{\stretch{1}}(2.7)

Applied to the Fourier representation this is

\begin{aligned}F = \frac{1}{{(\sqrt{2 \pi})^3}} \int \left( - \frac{1}{{c}} \dot{\mathbf{A}}- i \mathbf{k} \phi+ i \mathbf{k} \wedge \mathbf{A}\right)e^{i \mathbf{k} \cdot \mathbf{x} } d^3 \mathbf{k}.\end{aligned} \hspace{\stretch{1}}(2.8)

The energy momentum tensor is then

\begin{aligned}T(a) &= -\frac{\epsilon_0}{2 (2 \pi)^3} \text{Real} \iint \left( - \frac{1}{{c}} {{\dot{\mathbf{A}}}}^{*}(\mathbf{k}',t)+ i \mathbf{k}' {{\phi}}^{*}(\mathbf{k}', t)- i \mathbf{k}' \wedge {\mathbf{A}}^{*}(\mathbf{k}', t)\right)a\left( - \frac{1}{{c}} \dot{\mathbf{A}}(\mathbf{k}, t)- i \mathbf{k} \phi(\mathbf{k}, t)+ i \mathbf{k} \wedge \mathbf{A}(\mathbf{k}, t)\right)e^{i (\mathbf{k} -\mathbf{k}') \cdot \mathbf{x} } d^3 \mathbf{k} d^3 \mathbf{k}'.\end{aligned} \hspace{\stretch{1}}(2.9)

The tensor integrated over all space. Energy and momentum?

Integrating this over all space and identification of the delta function

\begin{aligned}\delta(\mathbf{k}) \equiv \frac{1}{{(2 \pi)^3}} \int e^{i \mathbf{k} \cdot \mathbf{x}} d^3 \mathbf{x},\end{aligned} \hspace{\stretch{1}}(3.10)

reduces the tensor to a single integral in the continuous angular wave number space of \mathbf{k}.

\begin{aligned}\int T(a) d^3 \mathbf{x} &= -\frac{\epsilon_0}{2} \text{Real} \int \left( - \frac{1}{{c}} {{\dot{\mathbf{A}}}}^{*}+ i \mathbf{k} {{\phi}}^{*}- i \mathbf{k} \wedge {\mathbf{A}}^{*}\right)a\left( - \frac{1}{{c}} \dot{\mathbf{A}}- i \mathbf{k} \phi+ i \mathbf{k} \wedge \mathbf{A}\right)d^3 \mathbf{k}.\end{aligned} \hspace{\stretch{1}}(3.11)

Observing that \gamma_0 commutes with spatial bivectors and anticommutes with spatial vectors, and writing \sigma_\mu = \gamma_\mu \gamma_0, one has

\begin{aligned}\int T(\gamma_\mu) \gamma_0 d^3 \mathbf{x} = \frac{\epsilon_0}{2} \text{Real} \int {\left\langle{{\left( \frac{1}{{c}} {{\dot{\mathbf{A}}}}^{*}- i \mathbf{k} {{\phi}}^{*}+ i \mathbf{k} \wedge {\mathbf{A}}^{*}\right)\sigma_\mu\left( \frac{1}{{c}} \dot{\mathbf{A}}+ i \mathbf{k} \phi+ i \mathbf{k} \wedge \mathbf{A}\right)}}\right\rangle}_{{0,1}}d^3 \mathbf{k}.\end{aligned} \hspace{\stretch{1}}(3.12)

The scalar and spatial vector grade selection operator has been added for convenience and does not change the result since those are necessarily the only grades anyhow. The post multiplication by the observer frame time basis vector \gamma_0 serves to separate the energy and momentum like components of the tensor nicely into scalar and vector aspects. In particular for T(\gamma^0), one could write

\begin{aligned}\int T(\gamma^0) d^3 \mathbf{x} = (H + \mathbf{P}) \gamma_0,\end{aligned} \hspace{\stretch{1}}(3.13)

If these are correctly identified with energy and momentum then it also ought to be true that we have the conservation relationship

\begin{aligned}\frac{\partial {H}}{\partial {t}} + \boldsymbol{\nabla} \cdot (c \mathbf{P}) = 0.\end{aligned} \hspace{\stretch{1}}(3.14)

However, multiplying out (3.12) yields for H

\begin{aligned}H &= \frac{\epsilon_0}{2} \int d^3 \mathbf{k} \left(\frac{1}{{c^2}} {\left\lvert{\dot{\mathbf{A}}}\right\rvert}^2 + \mathbf{k}^2 ({\left\lvert{\phi}\right\rvert}^2 + {\left\lvert{\mathbf{A}}\right\rvert}^2 )- {\left\lvert{\mathbf{k} \cdot \mathbf{A}}\right\rvert}^2 + 2 \frac{\mathbf{k}}{c} \cdot \text{Real}( i {{\phi}}^{*} \dot{\mathbf{A}} )\right)\end{aligned} \hspace{\stretch{1}}(3.15)

The vector component takes a bit more work to reduce

\begin{aligned}\mathbf{P} &= \frac{\epsilon_0}{2} \int d^3 \mathbf{k} \text{Real} \left(\frac{i}{c} ({{\dot{\mathbf{A}}}}^{*} \cdot (\mathbf{k} \wedge \mathbf{A})+ {{\phi}}^{*} \mathbf{k} \cdot (\mathbf{k} \wedge \mathbf{A})+ \frac{i}{c} (\mathbf{k} \wedge {\mathbf{A}}^{*}) \cdot \dot{\mathbf{A}}- \phi (\mathbf{k} \wedge {\mathbf{A}}^{*}) \cdot \mathbf{k}\right) \\ &=\frac{\epsilon_0}{2} \int d^3 \mathbf{k} \text{Real} \left(\frac{i}{c} \left( ({{\dot{\mathbf{A}}}}^{*} \cdot \mathbf{k}) \mathbf{A} -({{\dot{\mathbf{A}}}}^{*} \cdot \mathbf{A}) \mathbf{k} \right)+ {{\phi}}^{*} \left( \mathbf{k}^2 \mathbf{A} - (\mathbf{k} \cdot \mathbf{A}) \mathbf{k} \right)+ \frac{i}{c} \left( ({\mathbf{A}}^{*} \cdot \dot{\mathbf{A}}) \mathbf{k} - (\mathbf{k} \cdot \dot{\mathbf{A}}) {\mathbf{A}}^{*} \right)+ \phi \left( \mathbf{k}^2 {\mathbf{A}}^{*} -({\mathbf{A}}^{*} \cdot \mathbf{k}) \mathbf{k} \right) \right).\end{aligned}

Canceling and regrouping leaves

\begin{aligned}\mathbf{P}&=\epsilon_0 \int d^3 \mathbf{k} \text{Real} \left(\mathbf{A} \left( \mathbf{k}^2 {{\phi}}^{*} + \mathbf{k} \cdot {{\dot{\mathbf{A}}}}^{*} \right)+ \mathbf{k} \left( -{{\phi}}^{*} (\mathbf{k} \cdot \mathbf{A}) + \frac{i}{c} ({\mathbf{A}}^{*} \cdot \dot{\mathbf{A}})\right)\right).\end{aligned} \hspace{\stretch{1}}(3.16)

This has no explicit \mathbf{x} dependence, so the conservation relation (3.14) is violated unless {\partial {H}}/{\partial {t}} = 0. There is no reason to assume that will be the case. In the discrete Fourier series treatment, a gauge transformation allowed for elimination of \phi, and this implied \mathbf{k} \cdot \mathbf{A}_\mathbf{k} = 0 or \mathbf{A}_\mathbf{k} constant. We will probably have a similar result here, eliminating most of the terms in (3.15) and (3.16). Except for the constant \mathbf{A}_\mathbf{k} solution of the field equations there is no obvious way that such a simplified energy expression will have zero derivative.

A more reasonable conclusion is that this approach is flawed. We ought to be looking at the divergence relation as a starting point, and instead of integrating over all space, instead employing Gauss’s theorem to convert the divergence integral into a surface integral. Without math, the conservation relationship probably ought to be expressed as energy change in a volume is matched by the momentum change through the surface. However, without an integral over all space, we do not get the nice delta function cancellation observed above. How to proceed is not immediately clear. Stepping back to review applications of Gauss’s theorem is probably a good first step.

References

[1] Peeter Joot. Electrodynamic field energy for vacuum. [online]. http://sites.google.com/site/peeterjoot/math2009/fourierMaxVac.pdf.

[2] Peeter Joot. {Energy and momentum for Complex electric and magnetic field phasors.} [online]. http://sites.google.com/site/peeterjoot/math2009/complexFieldEnergy.pdf.

Posted in Math and Physics Learning. | Tagged: , , , , , , , | 1 Comment »

Electrodynamic field energy for vacuum (reworked)

Posted by peeterjoot on December 21, 2009

[Click here for a PDF of this post with nicer formatting]

Previous version.

This is a reworked version of a previous post ([also in PDF]

Reducing the products in the Dirac basis makes life more complicated then it needs to be (became obvious when attempting to derive an expression for the Poynting integral).

Motivation.

From Energy and momentum for Complex electric and magnetic field phasors [PDF] how to formulate the energy momentum tensor for complex vector fields (ie. phasors) in the Geometric Algebra formalism is now understood. To recap, for the field F = \mathbf{E} + I c \mathbf{B}, where \mathbf{E} and \mathbf{B} may be complex vectors we have for Maxwell’s equation

\begin{aligned}\nabla F = J/\epsilon_0 c.\end{aligned} \quad\quad\quad(1)

This is a doubly complex representation, with the four vector pseudoscalar I = \gamma_0 \gamma_1 \gamma_2 \gamma_3 acting as a non-commutatitive imaginary, as well as real and imaginary parts for the electric and magnetic field vectors. We take the real part (not the scalar part) of any bivector solution F of Maxwell’s equation as the actual solution, but allow ourself the freedom to work with the complex phasor representation when convenient. In these phasor vectors, the imaginary i, as in \mathbf{E} = \text{Real}(\mathbf{E}) + i \text{Imag}(\mathbf{E}), is a commuting imaginary, commuting with all the multivector elements in the algebra.

The real valued, four vector, energy momentum tensor T(a) was found to be

\begin{aligned}T(a) = \frac{\epsilon_0}{4} \Bigl( {{F}}^{*} a \tilde{F} + \tilde{F} a {{F}}^{*} \Bigr) = -\frac{\epsilon_0}{2} \text{Real} \Bigl( {{F}}^{*} a F \Bigr).\end{aligned} \quad\quad\quad(2)

To supply some context that gives meaning to this tensor the associated conservation relationship was found to be

\begin{aligned}\nabla \cdot T(a) &= a \cdot \frac{1}{{ c }} \text{Real} \left( J \cdot {{F}}^{*} \right).\end{aligned} \quad\quad\quad(3)

and in particular for a = \gamma^0, this four vector divergence takes the form

\begin{aligned}\frac{\partial {}}{\partial {t}}\frac{\epsilon_0}{2}(\mathbf{E} \cdot {\mathbf{E}}^{*} + c^2 \mathbf{B} \cdot {\mathbf{B}}^{*})+ \boldsymbol{\nabla} \cdot \frac{1}{{\mu_0}} \text{Real} (\mathbf{E} \times {\mathbf{B}}^{*} )+ \text{Real}( \mathbf{J} \cdot {\mathbf{E}}^{*} ) = 0,\end{aligned} \quad\quad\quad(4)

relating the energy term T^{00} = T(\gamma^0) \cdot \gamma^0 and the Poynting spatial vector T(\gamma^0) \wedge \gamma^0 with the current density and electric field product that constitutes the energy portion of the Lorentz force density.

Let’s apply this to calculating the energy associated with the field that is periodic within a rectangular prism as done by Bohm in [2]. We do not necessarily need the Geometric Algebra formalism for this calculation, but this will be a fun way to attempt it.

Setup

Let’s assume a Fourier representation for the four vector potential A for the field F = \nabla \wedge A. That is

\begin{aligned}A = \sum_{\mathbf{k}} A_\mathbf{k}(t) e^{i \mathbf{k} \cdot \mathbf{x}},\end{aligned} \quad\quad\quad(5)

where summation is over all angular wave number triplets \mathbf{k} = 2 \pi (k_1/\lambda_1, k_2/\lambda_2, k_3/\lambda_3). The Fourier coefficients A_\mathbf{k} = {A_\mathbf{k}}^\mu \gamma_\mu are allowed to be complex valued, as is the resulting four vector A, and the associated bivector field F.

Fourier inversion, with V = \lambda_1 \lambda_2 \lambda_3, follows from

\begin{aligned}\delta_{\mathbf{k}', \mathbf{k}} =\frac{1}{{ V }}\int_0^{\lambda_1}\int_0^{\lambda_2}\int_0^{\lambda_3} e^{ i \mathbf{k}' \cdot \mathbf{x}} e^{-i \mathbf{k} \cdot \mathbf{x}} dx^1 dx^2 dx^3,\end{aligned} \quad\quad\quad(6)

but only this orthogonality relationship and not the Fourier coefficients themselves

\begin{aligned}A_\mathbf{k} = \frac{1}{{ V }}\int_0^{\lambda_1}\int_0^{\lambda_2}\int_0^{\lambda_3} A(\mathbf{x}, t) e^{- i \mathbf{k} \cdot \mathbf{x}} dx^1 dx^2 dx^3,\end{aligned} \quad\quad\quad(7)

will be of interest here. Evaluating the curl for this potential yields

\begin{aligned}F = \nabla \wedge A= \sum_{\mathbf{k}} \left( \frac{1}{{c}} \gamma^0 \wedge \dot{A}_\mathbf{k} + \gamma^m \wedge A_\mathbf{k} \frac{2 \pi i k_m}{\lambda_m} \right) e^{i \mathbf{k} \cdot \mathbf{x}}.\end{aligned} \quad\quad\quad(8)

Since the four vector potential has been expressed using an explicit split into time and space components it will be natural to re express the bivector field in terms of scalar and (spatial) vector potentials, with the Fourier coefficients. Writing \sigma_m = \gamma_m \gamma_0 for the spatial basis vectors, {A_\mathbf{k}}^0 = \phi_\mathbf{k}, and \mathbf{A} = A^k \sigma_k, this is

\begin{aligned}A_\mathbf{k} = (\phi_\mathbf{k} + \mathbf{A}_\mathbf{k}) \gamma_0.\end{aligned} \quad\quad\quad(9)

The Faraday bivector field F is then

\begin{aligned}F = \sum_\mathbf{k} \left( -\frac{1}{{c}} \dot{\mathbf{A}}_\mathbf{k} - i \mathbf{k} \phi_\mathbf{k} + i \mathbf{k} \wedge \mathbf{A}_\mathbf{k} \right) e^{i \mathbf{k} \cdot \mathbf{x}}.\end{aligned} \quad\quad\quad(10)

This is now enough to express the energy momentum tensor T(\gamma^\mu)

\begin{aligned}T(\gamma^\mu) &= -\frac{\epsilon_0}{2} \sum_{\mathbf{k},\mathbf{k}'}\text{Real} \left(\left( -\frac{1}{{c}} {{(\dot{\mathbf{A}}_{\mathbf{k}'})}}^{*} + i \mathbf{k}' {{\phi_{\mathbf{k}'}}}^{*} - i \mathbf{k}' \wedge {{\mathbf{A}_{\mathbf{k}'}}}^{*} \right) \gamma^\mu \left( -\frac{1}{{c}} \dot{\mathbf{A}}_\mathbf{k} - i \mathbf{k} \phi_\mathbf{k} + i \mathbf{k} \wedge \mathbf{A}_\mathbf{k} \right) e^{i (\mathbf{k} -\mathbf{k}') \cdot \mathbf{x}}\right).\end{aligned} \quad\quad\quad(11)

It will be more convenient to work with a scalar plus bivector (spatial vector) form of this tensor, and right multiplication by \gamma_0 produces such a split

\begin{aligned}T(\gamma^\mu) \gamma_0 = \left\langle{{T(\gamma^\mu) \gamma_0}}\right\rangle + \sigma_a \left\langle{{ \sigma_a T(\gamma^\mu) \gamma_0 }}\right\rangle\end{aligned} \quad\quad\quad(12)

The primary object of this treatment will be consideration of the \mu = 0 components of the tensor, which provide a split into energy density T(\gamma^0) \cdot \gamma_0, and Poynting vector (momentum density) T(\gamma^0) \wedge \gamma_0.

Our first step is to integrate (12) over the volume V. This integration and the orthogonality relationship (6), removes the exponentials, leaving

\begin{aligned}\int T(\gamma^\mu) \cdot \gamma_0&= -\frac{\epsilon_0 V}{2} \sum_{\mathbf{k}}\text{Real} \left\langle{{\left( -\frac{1}{{c}} {{(\dot{\mathbf{A}}_{\mathbf{k}})}}^{*} + i \mathbf{k} {{\phi_{\mathbf{k}}}}^{*} - i \mathbf{k} \wedge {{\mathbf{A}_{\mathbf{k}}}}^{*} \right) \gamma^\mu \left( -\frac{1}{{c}} \dot{\mathbf{A}}_\mathbf{k} - i \mathbf{k} \phi_\mathbf{k} + i \mathbf{k} \wedge \mathbf{A}_\mathbf{k} \right) \gamma_0 }}\right\rangle \\ \int T(\gamma^\mu) \wedge \gamma_0&= -\frac{\epsilon_0 V}{2} \sum_{\mathbf{k}}\text{Real} \sigma_a \left\langle{{ \sigma_a\left( -\frac{1}{{c}} {{(\dot{\mathbf{A}}_{\mathbf{k}})}}^{*} + i \mathbf{k} {{\phi_{\mathbf{k}}}}^{*} - i \mathbf{k} \wedge {{\mathbf{A}_{\mathbf{k}}}}^{*} \right) \gamma^\mu \left( -\frac{1}{{c}} \dot{\mathbf{A}}_\mathbf{k} - i \mathbf{k} \phi_\mathbf{k} + i \mathbf{k} \wedge \mathbf{A}_\mathbf{k} \right) \gamma_0}}\right\rangle \end{aligned} \quad\quad\quad(13)

Because \gamma_0 commutes with the spatial bivectors, and anticommutes with the spatial vectors, the remainder of the Dirac basis vectors in these expressions can be eliminated

\begin{aligned}\int T(\gamma^0) \cdot \gamma_0&= -\frac{\epsilon_0 V }{2} \sum_{\mathbf{k}}\text{Real} \left\langle{{\left( -\frac{1}{{c}} {{(\dot{\mathbf{A}}_{\mathbf{k}})}}^{*} + i \mathbf{k} {{\phi_{\mathbf{k}}}}^{*} - i \mathbf{k} \wedge {{\mathbf{A}_{\mathbf{k}}}}^{*} \right) \left( \frac{1}{{c}} \dot{\mathbf{A}}_\mathbf{k} + i \mathbf{k} \phi_\mathbf{k} + i \mathbf{k} \wedge \mathbf{A}_\mathbf{k} \right) }}\right\rangle \end{aligned} \quad\quad\quad(15)

\begin{aligned}\int T(\gamma^0) \wedge \gamma_0&= -\frac{\epsilon_0 V}{2} \sum_{\mathbf{k}}\text{Real} \sigma_a \left\langle{{ \sigma_a\left( -\frac{1}{{c}} {{(\dot{\mathbf{A}}_{\mathbf{k}})}}^{*} + i \mathbf{k} {{\phi_{\mathbf{k}}}}^{*} - i \mathbf{k} \wedge {{\mathbf{A}_{\mathbf{k}}}}^{*} \right) \left( \frac{1}{{c}} \dot{\mathbf{A}}_\mathbf{k} + i \mathbf{k} \phi_\mathbf{k} + i \mathbf{k} \wedge \mathbf{A}_\mathbf{k} \right) }}\right\rangle \end{aligned} \quad\quad\quad(16)

\begin{aligned}\int T(\gamma^m) \cdot \gamma_0&= \frac{\epsilon_0 V }{2} \sum_{\mathbf{k}}\text{Real} \left\langle{{\left( -\frac{1}{{c}} {{(\dot{\mathbf{A}}_{\mathbf{k}})}}^{*} + i \mathbf{k} {{\phi_{\mathbf{k}}}}^{*} - i \mathbf{k} \wedge {{\mathbf{A}_{\mathbf{k}}}}^{*} \right) \sigma_m\left( \frac{1}{{c}} \dot{\mathbf{A}}_\mathbf{k} + i \mathbf{k} \phi_\mathbf{k} + i \mathbf{k} \wedge \mathbf{A}_\mathbf{k} \right) }}\right\rangle \end{aligned} \quad\quad\quad(17)

\begin{aligned}\int T(\gamma^m) \wedge \gamma_0&= \frac{\epsilon_0 V}{2} \sum_{\mathbf{k}}\text{Real} \sigma_a \left\langle{{ \sigma_a\left( -\frac{1}{{c}} {{(\dot{\mathbf{A}}_{\mathbf{k}})}}^{*} + i \mathbf{k} {{\phi_{\mathbf{k}}}}^{*} - i \mathbf{k} \wedge {{\mathbf{A}_{\mathbf{k}}}}^{*} \right) \sigma_m\left( \frac{1}{{c}} \dot{\mathbf{A}}_\mathbf{k} + i \mathbf{k} \phi_\mathbf{k} + i \mathbf{k} \wedge \mathbf{A}_\mathbf{k} \right) }}\right\rangle.\end{aligned} \quad\quad\quad(18)

Expanding the energy momentum tensor components.

Energy

In (15) only the bivector-bivector and vector-vector products produce any scalar grades. Except for the bivector product this can be done by inspection. For that part we utilize the identity

\begin{aligned}\left\langle{{ (\mathbf{k} \wedge \mathbf{a}) (\mathbf{k} \wedge \mathbf{b}) }}\right\rangle= (\mathbf{a} \cdot \mathbf{k}) (\mathbf{b} \cdot \mathbf{k}) - \mathbf{k}^2 (\mathbf{a} \cdot \mathbf{b}).\end{aligned} \quad\quad\quad(19)

This leaves for the energy H = \int T(\gamma^0) \cdot \gamma_0 in the volume

\begin{aligned}H = \frac{\epsilon_0 V}{2} \sum_\mathbf{k} \left(\frac{1}{{c^2}} {\left\lvert{\dot{\mathbf{A}}_\mathbf{k}}\right\rvert}^2 +\mathbf{k}^2 \left( {\left\lvert{\phi_\mathbf{k}}\right\rvert}^2 + {\left\lvert{\mathbf{A}_\mathbf{k}}\right\rvert}^2 \right) - {\left\lvert{\mathbf{k} \cdot \mathbf{A}_\mathbf{k}}\right\rvert}^2+ \frac{2}{c} \text{Real} \left( i {{\phi_\mathbf{k}}}^{*} \cdot \dot{\mathbf{A}}_\mathbf{k} \right)\right)\end{aligned} \quad\quad\quad(20)

We are left with a completely real expression, and one without any explicit Geometric Algebra. This does not look like the Harmonic oscillator Hamiltonian that was expected. A gauge transformation to eliminate \phi_\mathbf{k} and an observation about when \mathbf{k} \cdot \mathbf{A}_\mathbf{k} equals zero will give us that, but first lets get the mechanical jobs done, and reduce the products for the field momentum.

Momentum

Now move on to (16). For the factors other than \sigma_a only the vector-bivector products can contribute to the scalar product. We have two such products, one of the form

\begin{aligned}\sigma_a \left\langle{{ \sigma_a \mathbf{a} (\mathbf{k} \wedge \mathbf{c}) }}\right\rangle&=\sigma_a (\mathbf{c} \cdot \sigma_a) (\mathbf{a} \cdot \mathbf{k}) - \sigma_a (\mathbf{k} \cdot \sigma_a) (\mathbf{a} \cdot \mathbf{c}) \\ &=\mathbf{c} (\mathbf{a} \cdot \mathbf{k}) - \mathbf{k} (\mathbf{a} \cdot \mathbf{c}),\end{aligned}

and the other

\begin{aligned}\sigma_a \left\langle{{ \sigma_a (\mathbf{k} \wedge \mathbf{c}) \mathbf{a} }}\right\rangle&=\sigma_a (\mathbf{k} \cdot \sigma_a) (\mathbf{a} \cdot \mathbf{c}) - \sigma_a (\mathbf{c} \cdot \sigma_a) (\mathbf{a} \cdot \mathbf{k}) \\ &=\mathbf{k} (\mathbf{a} \cdot \mathbf{c}) - \mathbf{c} (\mathbf{a} \cdot \mathbf{k}).\end{aligned}

The momentum \mathbf{P} = \int T(\gamma^0) \wedge \gamma_0 in this volume follows by computation of

\begin{aligned}&\sigma_a \left\langle{{ \sigma_a\left( -\frac{1}{{c}} {{(\dot{\mathbf{A}}_{\mathbf{k}})}}^{*} + i \mathbf{k} {{\phi_{\mathbf{k}}}}^{*} - i \mathbf{k} \wedge {{\mathbf{A}_{\mathbf{k}}}}^{*} \right) \left( \frac{1}{{c}} \dot{\mathbf{A}}_\mathbf{k} + i \mathbf{k} \phi_\mathbf{k} + i \mathbf{k} \wedge \mathbf{A}_\mathbf{k} \right) }}\right\rangle \\ &=  i \mathbf{A}_\mathbf{k} \left( \left( -\frac{1}{{c}} {{(\dot{\mathbf{A}}_{\mathbf{k}})}}^{*} + i \mathbf{k} {{\phi_{\mathbf{k}}}}^{*} \right) \cdot \mathbf{k} \right)  - i \mathbf{k} \left( \left( -\frac{1}{{c}} {{(\dot{\mathbf{A}}_{\mathbf{k}})}}^{*} + i \mathbf{k} {{\phi_{\mathbf{k}}}}^{*} \right) \cdot \mathbf{A}_\mathbf{k} \right)  \\ &- i \mathbf{k} \left( \left( \frac{1}{{c}} \dot{\mathbf{A}}_\mathbf{k} + i \mathbf{k} \phi_\mathbf{k} \right) \cdot {{\mathbf{A}_\mathbf{k}}}^{*} \right)  + i {{\mathbf{A}_{\mathbf{k}}}}^{*} \left( \left( \frac{1}{{c}} \dot{\mathbf{A}}_\mathbf{k} + i \mathbf{k} \phi_\mathbf{k} \right) \cdot \mathbf{k} \right)\end{aligned}

All the products are paired in nice conjugates, taking real parts, and premultiplication with -\epsilon_0 V/2 gives the desired result. Observe that two of these terms cancel, and another two have no real part. Those last are

\begin{aligned}-\frac{\epsilon_0 V \mathbf{k}}{2 c} \text{Real} \left( i {{(\dot{\mathbf{A}}_\mathbf{k}}}^{*} \cdot \mathbf{A}_\mathbf{k}+\dot{\mathbf{A}}_\mathbf{k} \cdot {{\mathbf{A}_\mathbf{k}}}^{*} \right)&=-\frac{\epsilon_0 V \mathbf{k}}{2 c} \text{Real} \left( i \frac{d}{dt} \mathbf{A}_\mathbf{k} \cdot {{\mathbf{A}_\mathbf{k}}}^{*} \right)\end{aligned}

Taking the real part of this pure imaginary i {\left\lvert{\mathbf{A}_\mathbf{k}}\right\rvert}^2 is zero, leaving just

\begin{aligned}\mathbf{P} &= \epsilon_0 V \sum_{\mathbf{k}}\text{Real} \left(i \mathbf{A}_\mathbf{k} \left( \frac{1}{{c}} {{\dot{\mathbf{A}}_\mathbf{k}}}^{*} \cdot \mathbf{k} \right)+ \mathbf{k}^2 \phi_\mathbf{k} {{ \mathbf{A}_\mathbf{k} }}^{*}- \mathbf{k} {{\phi_\mathbf{k}}}^{*} (\mathbf{k} \cdot \mathbf{A}_\mathbf{k})\right)\end{aligned} \quad\quad\quad(21)

I am not sure why exactly, but I actually expected a term with {\left\lvert{\mathbf{A}_\mathbf{k}}\right\rvert}^2, quadratic in the vector potential. Is there a mistake above?

Gauge transformation to simplify the Hamiltonian.

In (20) something that looked like the Harmonic oscillator was expected. On the surface this does not appear to be such a beast. Exploitation of gauge freedom is required to make the simplification that puts things into the Harmonic oscillator form.

If we are to change our four vector potential A \rightarrow A + \nabla \psi, then Maxwell’s equation takes the form

\begin{aligned}J/\epsilon_0 c = \nabla (\nabla \wedge (A + \nabla \psi) = \nabla (\nabla \wedge A) + \nabla (\underbrace{\nabla \wedge \nabla \psi}_{=0}),\end{aligned} \quad\quad\quad(22)

which is unchanged by the addition of the gradient to any original potential solution to the equation. In coordinates this is a transformation of the form

\begin{aligned}A^\mu \rightarrow A^\mu + \partial_\mu \psi,\end{aligned} \quad\quad\quad(23)

and we can use this to force any one of the potential coordinates to zero. For this problem, it appears that it is desirable to seek a \psi such that A^0 + \partial_0 \psi = 0. That is

\begin{aligned}\sum_\mathbf{k} \phi_\mathbf{k}(t) e^{i \mathbf{k} \cdot \mathbf{x}} + \frac{1}{{c}} \partial_t \psi = 0.\end{aligned} \quad\quad\quad(24)

Or,

\begin{aligned}\psi(\mathbf{x},t) = \psi(\mathbf{x},0) -\frac{1}{{c}} \sum_\mathbf{k} e^{i \mathbf{k} \cdot \mathbf{x}} \int_{\tau=0}^t \phi_\mathbf{k}(\tau).\end{aligned} \quad\quad\quad(25)

With such a transformation, the \phi_\mathbf{k} and \dot{\mathbf{A}}_\mathbf{k} cross term in the Hamiltonian (20) vanishes, as does the \phi_\mathbf{k} term in the four vector square of the last term, leaving just

\begin{aligned}H = \frac{\epsilon_0}{c^2} V \sum_\mathbf{k}\left(\frac{1}{{2}} {\left\lvert{\dot{\mathbf{A}}_\mathbf{k}}\right\rvert}^2+\frac{1}{{2}} \Bigl((c \mathbf{k})^2 {\left\lvert{\mathbf{A}_\mathbf{k}}\right\rvert}^2 + {\left\lvert{ ( c \mathbf{k}) \cdot \mathbf{A}_\mathbf{k}}\right\rvert}^2+ {\left\lvert{ c \mathbf{k} \cdot \mathbf{A}_\mathbf{k}}\right\rvert}^2\Bigr)\right).\end{aligned} \quad\quad\quad(26)

Additionally, wedging (5) with \gamma_0 now does not loose any information so our potential Fourier series is reduced to just

\begin{aligned}\mathbf{A} &= \sum_{\mathbf{k}} \mathbf{A}_\mathbf{k}(t) e^{2 \pi i \mathbf{k} \cdot \mathbf{x}} \\ \mathbf{A}_\mathbf{k} &= \frac{1}{{ V }}\int_0^{\lambda_1}\int_0^{\lambda_2}\int_0^{\lambda_3} \mathbf{A}(\mathbf{x}, t) e^{-i \mathbf{k} \cdot \mathbf{x}} dx^1 dx^2 dx^3.\end{aligned} \quad\quad\quad(27)

The desired harmonic oscillator form would be had in (26) if it were not for the \mathbf{k} \cdot \mathbf{A}_\mathbf{k} term. Does that vanish? Returning to Maxwell’s equation should answer that question, but first it has to be expressed in terms of the vector potential. While \mathbf{A} = A \wedge \gamma_0, the lack of an A^0 component means that this can be inverted as

\begin{aligned}A = \mathbf{A} \gamma_0 = -\gamma_0 \mathbf{A}.\end{aligned} \quad\quad\quad(29)

The gradient can also be factored scalar and spatial vector components

\begin{aligned}\nabla = \gamma^0 ( \partial_0 + \boldsymbol{\nabla} ) = ( \partial_0 - \boldsymbol{\nabla} ) \gamma^0.\end{aligned} \quad\quad\quad(30)

So, with this A^0 = 0 gauge choice the bivector field F is

\begin{aligned}F = \nabla \wedge A = \frac{1}{{2}} \left( \stackrel{ \rightarrow }{\nabla} A - A \stackrel{ \leftarrow }{\nabla} \right) \end{aligned} \quad\quad\quad(31)

From the left the gradient action on A is

\begin{aligned}\stackrel{ \rightarrow }{\nabla} A &= ( \partial_0 - \boldsymbol{\nabla} ) \gamma^0 (-\gamma_0 \mathbf{A}) \\ &= ( -\partial_0 + \stackrel{ \rightarrow }{\boldsymbol{\nabla}} ) \mathbf{A},\end{aligned}

and from the right

\begin{aligned}A \stackrel{ \leftarrow }{\nabla}&= \mathbf{A} \gamma_0 \gamma^0 ( \partial_0 + \boldsymbol{\nabla} ) \\ &= \mathbf{A} ( \partial_0 + \boldsymbol{\nabla} ) \\ &= \partial_0 \mathbf{A} + \mathbf{A} \stackrel{ \leftarrow }{\boldsymbol{\nabla}} \end{aligned}

Taking the difference we have

\begin{aligned}F &= \frac{1}{{2}} \Bigl( -\partial_0 \mathbf{A} + \stackrel{ \rightarrow }{\boldsymbol{\nabla}} \mathbf{A} -  \partial_0 \mathbf{A} - \mathbf{A} \stackrel{ \leftarrow }{\boldsymbol{\nabla}} \Bigr).\end{aligned}

Which is just

\begin{aligned}F = -\partial_0 \mathbf{A} + \boldsymbol{\nabla} \wedge \mathbf{A}.\end{aligned} \quad\quad\quad(32)

For this vacuum case, premultiplication of Maxwell’s equation by \gamma_0 gives

\begin{aligned}0 &= \gamma_0 \nabla ( -\partial_0 \mathbf{A} + \boldsymbol{\nabla} \wedge \mathbf{A} ) \\ &= (\partial_0 + \boldsymbol{\nabla})( -\partial_0 \mathbf{A} + \boldsymbol{\nabla} \wedge \mathbf{A} ) \\ &= -\frac{1}{{c^2}} \partial_{tt} \mathbf{A} - \partial_0 \boldsymbol{\nabla} \cdot \mathbf{A} - \partial_0 \boldsymbol{\nabla} \wedge \mathbf{A} + \partial_0 ( \boldsymbol{\nabla} \wedge \mathbf{A} ) + \underbrace{\boldsymbol{\nabla} \cdot ( \boldsymbol{\nabla} \wedge \mathbf{A} ) }_{\boldsymbol{\nabla}^2 \mathbf{A} - \boldsymbol{\nabla} (\boldsymbol{\nabla} \cdot \mathbf{A})}+ \underbrace{\boldsymbol{\nabla} \wedge ( \boldsymbol{\nabla} \wedge \mathbf{A} )}_{=0} \\ \end{aligned}

The spatial bivector and trivector grades are all zero. Equating the remaining scalar and vector components to zero separately yields a pair of equations in \mathbf{A}

\begin{aligned}0 &= \partial_t (\boldsymbol{\nabla} \cdot \mathbf{A}) \\ 0 &= -\frac{1}{{c^2}} \partial_{tt} \mathbf{A} + \boldsymbol{\nabla}^2 \mathbf{A} + \boldsymbol{\nabla} (\boldsymbol{\nabla} \cdot \mathbf{A}) \end{aligned} \quad\quad\quad(33)

If the divergence of the vector potential is constant we have just a wave equation. Let’s see what that divergence is with the assumed Fourier representation

\begin{aligned}\boldsymbol{\nabla} \cdot \mathbf{A} &=\sum_{\mathbf{k} \ne (0,0,0)} {\mathbf{A}_\mathbf{k}}^m 2 \pi i \frac{k_m}{\lambda_m} e^{i \mathbf{k} \cdot \mathbf{x}} \\ &=i \sum_{\mathbf{k} \ne (0,0,0)} (\mathbf{A}_\mathbf{k} \cdot \mathbf{k}) e^{i \mathbf{k} \cdot \mathbf{x}} \\ &=i \sum_\mathbf{k} (\mathbf{A}_\mathbf{k} \cdot \mathbf{k}) e^{i \mathbf{k} \cdot \mathbf{x}} \end{aligned}

Since \mathbf{A}_\mathbf{k} = \mathbf{A}_\mathbf{k}(t), there are two ways for \partial_t (\boldsymbol{\nabla} \cdot \mathbf{A}) = 0. For each \mathbf{k} there must be a requirement for either \mathbf{A}_\mathbf{k} \cdot \mathbf{k} = 0 or \mathbf{A}_\mathbf{k} = \text{constant}. The constant \mathbf{A}_\mathbf{k} solution to the first equation appears to represent a standing spatial wave with no time dependence. Is that of any interest?

The more interesting seeming case is where we have some non-static time varying state. In this case, if \mathbf{A}_\mathbf{k} \cdot \mathbf{k}, the second of these Maxwell’s equations is just the vector potential wave equation, since the divergence is zero. That is

\begin{aligned}0 &= -\frac{1}{{c^2}} \partial_{tt} \mathbf{A} + \boldsymbol{\nabla}^2 \mathbf{A} \end{aligned} \quad\quad\quad(35)

Solving this isn’t really what is of interest, since the objective was just to determine if the divergence could be assumed to be zero. This shows then, that if the transverse solution to Maxwell’s equation is picked, the Hamiltonian for this field, with this gauge choice, becomes

\begin{aligned}H = \frac{\epsilon_0}{c^2} V \sum_\mathbf{k}\left(\frac{1}{{2}} {\left\lvert{\dot{\mathbf{A}}_\mathbf{k}}\right\rvert}^2+\frac{1}{{2}} (c \mathbf{k})^2 {\left\lvert{\mathbf{A}_\mathbf{k}}\right\rvert}^2 \right).\end{aligned} \quad\quad\quad(36)

How does the gauge choice alter the Poynting vector? From (21), all the \phi_\mathbf{k} dependence in that integrated momentum density is lost

\begin{aligned}\mathbf{P} &= \epsilon_0 V \sum_{\mathbf{k}}\text{Real} \left(i \mathbf{A}_\mathbf{k} \left( \frac{1}{{c}} {{\dot{\mathbf{A}}_\mathbf{k}}}^{*} \cdot \mathbf{k} \right)\right).\end{aligned} \quad\quad\quad(37)

The \mathbf{A}_\mathbf{k} \cdot \mathbf{k} solutions to Maxwell’s equation are seen to result in zero momentum for this infinite periodic field. My expectation was something of the form c \mathbf{P} = H \hat{\mathbf{k}}, so intuition is either failing me, or my math is failing me, or this contrived periodic field solution leads to trouble.

Conclusions and followup.

The objective was met, a reproduction of Bohm’s Harmonic oscillator result using a complex exponential Fourier series instead of separate sine and cosines.

The reason for Bohm’s choice to fix zero divergence as the gauge choice upfront is now clear. That automatically cuts complexity from the results. Figuring out how to work this problem with complex valued potentials and also using the Geometric Algebra formulation probably also made the work a bit more difficult since blundering through both simultaneously was required instead of just one at a time.

This was an interesting exercise though, since doing it this way I am able to understand all the intermediate steps. Bohm employed some subtler argumentation to eliminate the scalar potential \phi upfront, and I have to admit I did not follow his logic, whereas blindly following where the math leads me all makes sense.

As a bit of followup, I’d like to consider the constant \mathbf{A}_\mathbf{k} case in more detail, and any implications of the freedom to pick \mathbf{A}_0.

The general calculation of T^{\mu\nu} for the assumed Fourier solution should be possible too, but was not attempted. Doing that general calculation with a four dimensional Fourier series is likely tidier than working with scalar and spatial variables as done here.

Now that the math is out of the way (except possibly for the momentum which doesn’t seem right), some discussion of implications and applications is also in order. My preference is to let the math sink-in a bit first and mull over the momentum issues at leisure.

References

[2] D. Bohm. Quantum Theory. Courier Dover Publications, 1989.

Posted in Math and Physics Learning. | Tagged: , , , , , , , , , , | 2 Comments »

Electrodynamic field energy for vacuum.

Posted by peeterjoot on December 19, 2009

[Click here for a PDF of this post with nicer formatting]

Motivation.

We now know how to formulate the energy momentum tensor for complex vector fields (ie. phasors) in the Geometric Algebra formalism. To recap, for the field F = \mathbf{E} + I c \mathbf{B}, where \mathbf{E} and \mathbf{B} may be complex vectors we have for Maxwell’s equation

\begin{aligned}\nabla F = J/\epsilon_0 c.\end{aligned} \quad\quad\quad(1)

This is a doubly complex representation, with the four vector pseudoscalar I = \gamma_0 \gamma_1 \gamma_2 \gamma_3 acting as a non-commutatitive imaginary, as well as real and imaginary parts for the electric and magnetic field vectors. We take the real part (not the scalar part) of any bivector solution F of Maxwell’s equation as the actual solution, but allow ourself the freedom to work with the complex phasor representation when convenient. In these phasor vectors, the imaginary i, as in \mathbf{E} = \text{Real}(\mathbf{E}) + i \text{Imag}(\mathbf{E}), is a commuting imaginary, commuting with all the multivector elements in the algebra.

The real valued, four vector, energy momentum tensor T(a) was found to be

\begin{aligned}T(a) = \frac{\epsilon_0}{4} \Bigl( {{F}}^{*} a \tilde{F} + \tilde{F} a {{F}}^{*} \Bigr) = -\frac{\epsilon_0}{2} \text{Real} \Bigl( {{F}}^{*} a F \Bigr).\end{aligned} \quad\quad\quad(2)

To supply some context that gives meaning to this tensor the associated conservation relationship was found to be

\begin{aligned}\nabla \cdot T(a) &= a \cdot \frac{1}{{ c }} \text{Real} \left( J \cdot {{F}}^{*} \right).\end{aligned} \quad\quad\quad(3)

and in particular for a = \gamma^0, this four vector divergence takes the form

\begin{aligned}\frac{\partial {}}{\partial {t}}\frac{\epsilon_0}{2}(\mathbf{E} \cdot {\mathbf{E}}^{*} + c^2 \mathbf{B} \cdot {\mathbf{B}}^{*})+ \boldsymbol{\nabla} \cdot \frac{1}{{\mu_0}} \text{Real} (\mathbf{E} \times {\mathbf{B}}^{*} )+ \text{Real}( \mathbf{J} \cdot {\mathbf{E}}^{*} ) = 0,\end{aligned} \quad\quad\quad(4)

relating the energy term T^{00} = T(\gamma^0) \cdot \gamma^0 and the Poynting spatial vector T(\gamma^0) \wedge \gamma^0 with the current density and electric field product that constitutes the energy portion of the Lorentz force density.

Let’s apply this to calculating the energy associated with the field that is periodic within a rectangular prism as done by Bohm in [1]. We do not necessarily need the Geometric Algebra formalism for this calculation, but this will be a fun way to attempt it.

Setup

Let’s assume a Fourier representation for the four vector potential A for the field F = \nabla \wedge A. That is

\begin{aligned}A = \sum_{\mathbf{k}} A_\mathbf{k}(t) e^{2 \pi i \mathbf{k} \cdot \mathbf{x}},\end{aligned} \quad\quad\quad(5)

where summation is over all wave number triplets \mathbf{k} = (p/\lambda_1,q/\lambda_2,r/\lambda_3). The Fourier coefficients A_\mathbf{k} = {A_\mathbf{k}}^\mu \gamma_\mu are allowed to be complex valued, as is the resulting four vector A, and the associated bivector field F.

Fourier inversion follows from

\begin{aligned}\delta_{\mathbf{k}', \mathbf{k}} =\frac{1}{{ \lambda_1 \lambda_2 \lambda_3 }}\int_0^{\lambda_1}\int_0^{\lambda_2}\int_0^{\lambda_3} e^{2 \pi i \mathbf{k}' \cdot \mathbf{x}} e^{-2 \pi i \mathbf{k} \cdot \mathbf{x}} dx^1 dx^2 dx^3,\end{aligned} \quad\quad\quad(6)

but only this orthogonality relationship and not the Fourier coefficients themselves

\begin{aligned}A_\mathbf{k} = \frac{1}{{ \lambda_1 \lambda_2 \lambda_3 }}\int_0^{\lambda_1}\int_0^{\lambda_2}\int_0^{\lambda_3} A(\mathbf{x}, t) e^{-2 \pi i \mathbf{k} \cdot \mathbf{x}} dx^1 dx^2 dx^3,\end{aligned} \quad\quad\quad(7)

will be of interest here. Evaluating the curl for this potential yields

\begin{aligned}F = \nabla \wedge A= \sum_{\mathbf{k}} \left( \frac{1}{{c}} \gamma^0 \wedge \dot{A}_\mathbf{k} + \sum_{m=1}^3 \gamma^m \wedge A_\mathbf{k} \frac{2 \pi i k_m}{\lambda_m} \right) e^{2 \pi i \mathbf{k} \cdot \mathbf{x}}.\end{aligned} \quad\quad\quad(8)

We can now form the energy density

\begin{aligned}U = T(\gamma^0) \cdot \gamma^0=-\frac{\epsilon_0}{2} \text{Real} \Bigl( {{F}}^{*} \gamma^0 F \gamma^0 \Bigr).\end{aligned} \quad\quad\quad(9)

With implied summation over all repeated integer indexes (even without matching uppers and lowers), this is

\begin{aligned}U =-\frac{\epsilon_0}{2} \sum_{\mathbf{k}', \mathbf{k}} \text{Real} \left\langle{{\left( \frac{1}{{c}} \gamma^0 \wedge {{\dot{A}_{\mathbf{k}'}}}^{*} - \gamma^m \wedge {{A_{\mathbf{k}'}}}^{*} \frac{2 \pi i k_m'}{\lambda_m} \right) e^{-2 \pi i \mathbf{k}' \cdot \mathbf{x}}\gamma^0\left( \frac{1}{{c}} \gamma^0 \wedge \dot{A}_\mathbf{k} + \gamma^n \wedge A_\mathbf{k} \frac{2 \pi i k_n}{\lambda_n} \right) e^{2 \pi i \mathbf{k} \cdot \mathbf{x}}\gamma^0}}\right\rangle.\end{aligned} \quad\quad\quad(10)

The grade selection used here doesn’t change the result since we already have a scalar, but will just make it convenient to filter out any higher order products that will cancel anyways. Integrating over the volume element and taking advantage of the orthogonality relationship (6), the exponentials are removed, leaving the energy contained in the volume

\begin{aligned}H = -\frac{\epsilon_0 \lambda_1 \lambda_2 \lambda_3}{2}\sum_{\mathbf{k}} \text{Real} \left\langle{{\left( \frac{1}{{c}} \gamma^0 \wedge {{\dot{A}_{\mathbf{k}}}}^{*} - \gamma^m \wedge {{A_{\mathbf{k}}}}^{*} \frac{2 \pi i k_m}{\lambda_m} \right) \gamma^0\left( \frac{1}{{c}} \gamma^0 \wedge \dot{A}_\mathbf{k} + \gamma^n \wedge A_\mathbf{k} \frac{2 \pi i k_n}{\lambda_n} \right) \gamma^0}}\right\rangle.\end{aligned} \quad\quad\quad(11)

First reduction of the Hamiltonian.

Let’s take the products involved in sequence one at a time, and evaluate, later adding and taking real parts if required all of

\begin{aligned}\frac{1}{{c^2}}\left\langle{{ (\gamma^0 \wedge {{\dot{A}_{\mathbf{k}}}}^{*} ) \gamma^0 (\gamma^0 \wedge \dot{A}_\mathbf{k}) \gamma^0 }}\right\rangle &=-\frac{1}{{c^2}}\left\langle{{ (\gamma^0 \wedge {{\dot{A}_{\mathbf{k}}}}^{*} ) (\gamma^0 \wedge \dot{A}_\mathbf{k}) }}\right\rangle \end{aligned} \quad\quad\quad(12)

\begin{aligned}- \frac{2 \pi i k_m}{c \lambda_m} \left\langle{{ (\gamma^m \wedge {{A_{\mathbf{k}}}}^{*} ) \gamma^0 ( \gamma^0 \wedge \dot{A}_\mathbf{k} ) \gamma^0}}\right\rangle &=\frac{2 \pi i k_m}{c \lambda_m} \left\langle{{ (\gamma^m \wedge {{A_{\mathbf{k}}}}^{*} ) ( \gamma^0 \wedge \dot{A}_\mathbf{k} ) }}\right\rangle \end{aligned} \quad\quad\quad(13)

\begin{aligned}\frac{2 \pi i k_n}{c \lambda_n} \left\langle{{ ( \gamma^0 \wedge {{\dot{A}_{\mathbf{k}}}}^{*} ) \gamma^0 ( \gamma^n \wedge A_\mathbf{k} ) \gamma^0}}\right\rangle &=-\frac{2 \pi i k_n}{c \lambda_n} \left\langle{{ ( \gamma^0 \wedge {{\dot{A}_{\mathbf{k}}}}^{*} ) ( \gamma^n \wedge A_\mathbf{k} ) }}\right\rangle \end{aligned} \quad\quad\quad(14)

\begin{aligned}-\frac{4 \pi^2 k_m k_n}{\lambda_m \lambda_n}\left\langle{{ (\gamma^m \wedge {{A_{\mathbf{k}}}}^{*} ) \gamma^0(\gamma^n \wedge A_\mathbf{k} ) \gamma^0}}\right\rangle. &\end{aligned} \quad\quad\quad(15)

The expectation is to obtain a Hamiltonian for the field that has the structure of harmonic oscillators, where the middle two products would have to be zero or sum to zero or have real parts that sum to zero. The first is expected to contain only products of {\left\lvert{{\dot{A}_\mathbf{k}}^m}\right\rvert}^2, and the last only products of {\left\lvert{{A_\mathbf{k}}^m}\right\rvert}^2.

While initially guessing that (13) and (14) may cancel, this isn’t so obviously the case. The use of cyclic permutation of multivectors within the scalar grade selection operator \left\langle{{A B}}\right\rangle = \left\langle{{B A}}\right\rangle plus a change of dummy summation indexes in one of the two shows that this sum is of the form Z + {{Z}}^{*}. This sum is intrinsically real, so we can neglect one of the two doubling the other, but we will still be required to show that the real part of either is zero.

Lets reduce these one at a time starting with (12), and write \dot{A}_\mathbf{k} = \kappa temporarily

\begin{aligned}\left\langle{{ (\gamma^0 \wedge {{\kappa}}^{*} ) (\gamma^0 \wedge \kappa }}\right\rangle &={\kappa^m}^{{*}} \kappa^{m'}\left\langle{{ \gamma^0 \gamma_m \gamma^0 \gamma_{m'} }}\right\rangle \\ &=-{\kappa^m}^{{*}} \kappa^{m'}\left\langle{{ \gamma_m \gamma_{m'} }}\right\rangle  \\ &={\kappa^m}^{{*}} \kappa^{m'}\delta_{m m'}.\end{aligned}

So the first of our Hamiltonian terms is

\begin{aligned}\frac{\epsilon_0 \lambda_1 \lambda_2 \lambda_3}{2 c^2}\left\langle{{ (\gamma^0 \wedge {{\dot{A}_\mathbf{k}}}^{*} ) (\gamma^0 \wedge \dot{A}_\mathbf{k} }}\right\rangle &=\frac{\epsilon_0 \lambda_1 \lambda_2 \lambda_3}{2 c^2}{\left\lvert{{{\dot{A}}_{\mathbf{k}}}^m}\right\rvert}^2.\end{aligned} \quad\quad\quad(16)

Note that summation over m is still implied here, so we’d be better off with a spatial vector representation of the Fourier coefficients \mathbf{A}_\mathbf{k} = A_\mathbf{k} \wedge \gamma_0. With such a notation, this contribution to the Hamiltonian is

\begin{aligned}\frac{\epsilon_0 \lambda_1 \lambda_2 \lambda_3}{2 c^2} \dot{\mathbf{A}}_\mathbf{k} \cdot {{\dot{\mathbf{A}}_\mathbf{k}}}^{*}.\end{aligned} \quad\quad\quad(17)

To reduce (13) and (13), this time writing \kappa = A_\mathbf{k}, we can start with just the scalar selection

\begin{aligned}\left\langle{{ (\gamma^m \wedge {{\kappa}}^{*} ) ( \gamma^0 \wedge \dot{\kappa} ) }}\right\rangle &=\Bigl( \gamma^m {{(\kappa^0)}}^{*} - {{\kappa}}^{*} \underbrace{(\gamma^m \cdot \gamma^0)}_{=0} \Bigr) \cdot \dot{\kappa} \\ &={{(\kappa^0)}}^{*} \dot{\kappa}^m\end{aligned}

Thus the contribution to the Hamiltonian from (13) and (13) is

\begin{aligned}\frac{2 \epsilon_0 \lambda_1 \lambda_2 \lambda_3 \pi k_m}{c \lambda_m} \text{Real} \Bigl( i {{(A_\mathbf{k}^0)}}^{*} \dot{A_\mathbf{k}}^m \Bigl)=\frac{2 \pi \epsilon_0 \lambda_1 \lambda_2 \lambda_3}{c} \text{Real} \Bigl( i {{(A_\mathbf{k}^0)}}^{*} \mathbf{k} \cdot \dot{\mathbf{A}}_\mathbf{k} \Bigl).\end{aligned} \quad\quad\quad(18)

Most definitively not zero in general. Our final expansion (15) is the messiest. Again with A_\mathbf{k} = \kappa for short, the grade selection of this term in coordinates is

\begin{aligned}\left\langle{{ (\gamma^m \wedge {{\kappa}}^{*} ) \gamma^0 (\gamma^n \wedge \kappa ) \gamma^0 }}\right\rangle&=- {{\kappa_\mu}}^{*} \kappa^\nu   \left\langle{{ (\gamma^m \wedge \gamma^\mu) \gamma^0 (\gamma_n \wedge \gamma_\nu) \gamma^0 }}\right\rangle\end{aligned} \quad\quad\quad(19)

Expanding this out yields

\begin{aligned}\left\langle{{ (\gamma^m \wedge {{\kappa}}^{*} ) \gamma^0 (\gamma^n \wedge \kappa ) \gamma^0 }}\right\rangle&=- ( {\left\lvert{\kappa_0}\right\rvert}^2 - {\left\lvert{A^a}\right\rvert}^2 ) \delta_{m n} + {{A^n}}^{*} A^m.\end{aligned} \quad\quad\quad(20)

The contribution to the Hamiltonian from this, with \phi_\mathbf{k} = A^0_\mathbf{k}, is then

\begin{aligned}2 \pi^2 \epsilon_0 \lambda_1 \lambda_2 \lambda_3 \Bigl(-\mathbf{k}^2 {{\phi_\mathbf{k}}}^{*} \phi_\mathbf{k} + \mathbf{k}^2 ({{\mathbf{A}_\mathbf{k}}}^{*} \cdot \mathbf{A}_\mathbf{k})+ (\mathbf{k} \cdot {{\mathbf{A}_k}}^{*}) (\mathbf{k} \cdot \mathbf{A}_k)\Bigr).\end{aligned} \quad\quad\quad(21)

A final reassembly of the Hamiltonian from the parts (17) and (18) and (21) is then

\begin{aligned}H = \epsilon_0 \lambda_1 \lambda_2 \lambda_3 \sum_\mathbf{k}\left(\frac{1}{{2 c^2}} {\left\lvert{\dot{\mathbf{A}}_\mathbf{k}}\right\rvert}^2+\frac{2 \pi}{c} \text{Real} \Bigl( i {{ \phi_\mathbf{k} }}^{*} (\mathbf{k} \cdot \dot{\mathbf{A}}_\mathbf{k}) \Bigl)+2 \pi^2 \Bigl(\mathbf{k}^2 ( -{\left\lvert{\phi_\mathbf{k}}\right\rvert}^2 + {\left\lvert{\mathbf{A}_\mathbf{k}}\right\rvert}^2 ) + {\left\lvert{\mathbf{k} \cdot \mathbf{A}_\mathbf{k}}\right\rvert}^2\Bigr)\right).\end{aligned} \quad\quad\quad(22)

This is finally reduced to a completely real expression, and one without any explicit Geometric Algebra. All the four vector Fourier vector potentials written out explicitly in terms of the spacetime split A_\mathbf{k} = (\phi_\mathbf{k}, \mathbf{A}_\mathbf{k}), which is natural since an explicit time and space split was the starting point.

Gauge transformation to simplify the Hamiltonian.

While (22) has considerably simpler form than (11), what was expected, was something that looked like the Harmonic oscillator. On the surface this does not appear to be such a beast. Exploitation of gauge freedom is required to make the simplification that puts things into the Harmonic oscillator form.

If we are to change our four vector potential A \rightarrow A + \nabla \psi, then Maxwell’s equation takes the form

\begin{aligned}J/\epsilon_0 c = \nabla (\nabla \wedge (A + \nabla \psi) = \nabla (\nabla \wedge A) + \nabla (\underbrace{\nabla \wedge \nabla \psi}_{=0}),\end{aligned} \quad\quad\quad(23)

which is unchanged by the addition of the gradient to any original potential solution to the equation. In coordinates this is a transformation of the form

\begin{aligned}A^\mu \rightarrow A^\mu + \partial_\mu \psi,\end{aligned} \quad\quad\quad(24)

and we can use this to force any one of the potential coordinates to zero. For this problem, it appears that it is desirable to seek a \psi such that A^0 + \partial_0 \psi = 0. That is

\begin{aligned}\sum_\mathbf{k} \phi_\mathbf{k}(t) e^{2 \pi i \mathbf{k} \cdot \mathbf{x}} + \frac{1}{{c}} \partial_t \psi = 0.\end{aligned} \quad\quad\quad(25)

Or,

\begin{aligned}\psi(\mathbf{x},t) = \psi(\mathbf{x},0) -\frac{1}{{c}} \sum_\mathbf{k} e^{2 \pi i \mathbf{k} \cdot \mathbf{x}} \int_{\tau=0}^t \phi_\mathbf{k}(\tau).\end{aligned} \quad\quad\quad(26)

With such a transformation, the \phi_\mathbf{k} and \dot{\mathbf{A}}_\mathbf{k} cross term in the Hamiltonian (22) vanishes, as does the \phi_\mathbf{k} term in the four vector square of the last term, leaving just

\begin{aligned}H = \frac{\epsilon_0}{c^2} \lambda_1 \lambda_2 \lambda_3 \sum_\mathbf{k}\left(\frac{1}{{2}} {\left\lvert{\dot{\mathbf{A}}_\mathbf{k}}\right\rvert}^2+\frac{1}{{2}} \Bigl((2 \pi c \mathbf{k})^2 {\left\lvert{\mathbf{A}_\mathbf{k}}\right\rvert}^2 + {\left\lvert{ ( 2 \pi c \mathbf{k}) \cdot \mathbf{A}_\mathbf{k}}\right\rvert}^2\Bigr)\right).\end{aligned} \quad\quad\quad(27)

Additionally, wedging (5) with \gamma_0 now does not loose any information so our potential Fourier series is reduced to just

\begin{aligned}\mathbf{A} &= \sum_{\mathbf{k}} \mathbf{A}_\mathbf{k}(t) e^{2 \pi i \mathbf{k} \cdot \mathbf{x}} \\ \mathbf{A}_\mathbf{k} &= \frac{1}{{ \lambda_1 \lambda_2 \lambda_3 }}\int_0^{\lambda_1}\int_0^{\lambda_2}\int_0^{\lambda_3} \mathbf{A}(\mathbf{x}, t) e^{-2 \pi i \mathbf{k} \cdot \mathbf{x}} dx^1 dx^2 dx^3.\end{aligned} \quad\quad\quad(28)

The desired harmonic oscillator form would be had in (27) if it were not for the \mathbf{k} \cdot \mathbf{A}_\mathbf{k} term. Does that vanish? Returning to Maxwell’s equation should answer that question, but first it has to be expressed in terms of the vector potential. While \mathbf{A} = A \wedge \gamma_0, the lack of an A^0 component means that this can be inverted as

\begin{aligned}A = \mathbf{A} \gamma_0 = -\gamma_0 \mathbf{A}.\end{aligned} \quad\quad\quad(30)

The gradient can also be factored scalar and spatial vector components

\begin{aligned}\nabla = \gamma^0 ( \partial_0 + \boldsymbol{\nabla} ) = ( \partial_0 - \boldsymbol{\nabla} ) \gamma^0.\end{aligned} \quad\quad\quad(31)

So, with this A^0 = 0 gauge choice the bivector field F is

\begin{aligned}F = \nabla \wedge A = \frac{1}{{2}} \left( \stackrel{ \rightarrow }{\nabla} A - A \stackrel{ \leftarrow }{\nabla} \right) \end{aligned} \quad\quad\quad(32)

From the left the gradient action on A is

\begin{aligned}\stackrel{ \rightarrow }{\nabla} A &= ( \partial_0 - \boldsymbol{\nabla} ) \gamma^0 (-\gamma_0 \mathbf{A}) \\ &= ( -\partial_0 + \stackrel{ \rightarrow }{\boldsymbol{\nabla}} ) \mathbf{A},\end{aligned}

and from the right

\begin{aligned}A \stackrel{ \leftarrow }{\nabla}&= \mathbf{A} \gamma_0 \gamma^0 ( \partial_0 + \boldsymbol{\nabla} ) \\ &= \mathbf{A} ( \partial_0 + \boldsymbol{\nabla} ) \\ &= \partial_0 \mathbf{A} + \mathbf{A} \stackrel{ \leftarrow }{\boldsymbol{\nabla}} \end{aligned}

Taking the difference we have

\begin{aligned}F &= \frac{1}{{2}} \Bigl( -\partial_0 \mathbf{A} + \stackrel{ \rightarrow }{\boldsymbol{\nabla}} \mathbf{A} -  \partial_0 \mathbf{A} - \mathbf{A} \stackrel{ \leftarrow }{\boldsymbol{\nabla}} \Bigr).\end{aligned}

Which is just

\begin{aligned}F = -\partial_0 \mathbf{A} + \boldsymbol{\nabla} \wedge \mathbf{A}.\end{aligned} \quad\quad\quad(33)

For this vacuum case, premultiplication of Maxwell’s equation by \gamma_0 gives

\begin{aligned}0 &= \gamma_0 \nabla ( -\partial_0 \mathbf{A} + \boldsymbol{\nabla} \wedge \mathbf{A} ) \\ &= (\partial_0 + \boldsymbol{\nabla})( -\partial_0 \mathbf{A} + \boldsymbol{\nabla} \wedge \mathbf{A} ) \\ &= -\frac{1}{{c^2}} \partial_{tt} \mathbf{A} - \partial_0 \boldsymbol{\nabla} \cdot \mathbf{A} - \partial_0 \boldsymbol{\nabla} \wedge \mathbf{A} + \partial_0 ( \boldsymbol{\nabla} \wedge \mathbf{A} ) + \underbrace{\boldsymbol{\nabla} \cdot ( \boldsymbol{\nabla} \wedge \mathbf{A} ) }_{\boldsymbol{\nabla}^2 \mathbf{A} - \boldsymbol{\nabla} (\boldsymbol{\nabla} \cdot \mathbf{A})}+ \underbrace{\boldsymbol{\nabla} \wedge ( \boldsymbol{\nabla} \wedge \mathbf{A} )}_{=0} \\ \end{aligned}

The spatial bivector and trivector grades are all zero. Equating the remaining scalar and vector components to zero separately yields a pair of equations in \mathbf{A}

\begin{aligned}0 &= \partial_t (\boldsymbol{\nabla} \cdot \mathbf{A}) \\ 0 &= -\frac{1}{{c^2}} \partial_{tt} \mathbf{A} + \boldsymbol{\nabla}^2 \mathbf{A} + \boldsymbol{\nabla} (\boldsymbol{\nabla} \cdot \mathbf{A}) \end{aligned} \quad\quad\quad(34)

If the divergence of the vector potential is constant we have just a wave equation. Let’s see what that divergence is with the assumed Fourier representation

\begin{aligned}\boldsymbol{\nabla} \cdot \mathbf{A} &=\sum_{k \ne (0,0,0)} {\mathbf{A}_\mathbf{k}}^m 2 \pi i \frac{k_m}{\lambda_m} e^{2\pi i \mathbf{k} \cdot \mathbf{x}} \\ &=2 \pi i \sum_{k \ne (0,0,0)} (\mathbf{A}_\mathbf{k} \cdot \mathbf{k}) e^{2\pi i \mathbf{k} \cdot \mathbf{x}} \\ \end{aligned}

Since \mathbf{A}_\mathbf{k} = \mathbf{A}_\mathbf{k}(t), there are two ways for \partial_t (\boldsymbol{\nabla} \cdot \mathbf{A}) = 0. For each \mathbf{k} \ne 0 there must be a requirement for either \mathbf{A}_\mathbf{k} \cdot \mathbf{k} = 0 or \mathbf{A}_\mathbf{k} = \text{constant}. The constant \mathbf{A}_\mathbf{k} solution to the first equation appears to represent a standing spatial wave with no time dependence. Is that of any interest?

The more interesting seeming case is where we have some non-static time varying state. In this case, if \mathbf{A}_\mathbf{k} \cdot \mathbf{k} for all \mathbf{k} \ne 0 the second of these Maxwell’s equations is just the vector potential wave equation, since the divergence is zero. That is

\begin{aligned}0 &= -\frac{1}{{c^2}} \partial_{tt} \mathbf{A} + \boldsymbol{\nabla}^2 \mathbf{A} \end{aligned} \quad\quad\quad(36)

Solving this isn’t really what is of interest, since the objective was just to determine if the divergence could be assumed to be zero. This shows then, that if the transverse solution to Maxwell’s equation is picked, the Hamiltonian for this field, with this gauge choice, becomes

\begin{aligned}H = \frac{\epsilon_0}{c^2} \lambda_1 \lambda_2 \lambda_3 \sum_\mathbf{k}\left(\frac{1}{{2}} {\left\lvert{\dot{\mathbf{A}}_\mathbf{k}}\right\rvert}^2+\frac{1}{{2}} (2 \pi c \mathbf{k})^2 {\left\lvert{\mathbf{A}_\mathbf{k}}\right\rvert}^2 \right).\end{aligned} \quad\quad\quad(37)

Conclusions and followup.

The objective was met, a reproduction of Bohm’s Harmonic oscillator result using a complex exponential Fourier series instead of separate sine and cosines.

The reason for Bohm’s choice to fix zero divergence as the gauge choice upfront is now clear. That automatically cuts complexity from the results. Figuring out how to work this problem with complex valued potentials and also using the Geometric Algebra formulation probably also made the work a bit more difficult since blundering through both simultaneously was required instead of just one at a time.

This was an interesting exercise though, since doing it this way I am able to understand all the intermediate steps. Bohm employed some subtler argumentation to eliminate the scalar potential \phi upfront, and I have to admit I did not follow his logic, whereas blindly following where the math leads me all makes sense.

As a bit of followup, I’d like to consider the constant \mathbf{A}_\mathbf{k} case, and any implications of the freedom to pick \mathbf{A}_0. I’d also like to construct the Poynting vector T(\gamma^0) \wedge \gamma_0, and see what the structure of that is with this Fourier representation.

A general calculation of T^{\mu\nu} for an assumed Fourier solution should be possible too, but working in spatial quantities for the general case is probably torture. A four dimensional Fourier series is likely a superior option for the general case.

References

[1] D. Bohm. Quantum Theory. Courier Dover Publications, 1989.

Posted in Math and Physics Learning. | Tagged: , , , , , , , , , , | 1 Comment »

Relating the canonical energy momentum tensor to the Lagrangian gradient.

Posted by peeterjoot on September 12, 2009

[Click here for a PDF of this sequence of posts with nicer formatting]

In [4] many tensor quantities are not written in index form, but instead using a vector notation. In particular, the symmetric energy momentum tensor is expressed as

\begin{aligned}T(a) = -\frac{\epsilon_0}{2} F a F \end{aligned} \quad\quad\quad(25)

where the usual tensor form following by taking dot products with \gamma^\mu and substituting a = \gamma^\nu. The conservation equation for the canonical energy momentum tensor of (23) can be put into a similar vector form

\begin{aligned}T(a) &= \gamma_\alpha \frac{\partial {\mathcal{L}}}{\partial {(\partial_\alpha A^\beta)}} (a \cdot \nabla) A^\beta - a \mathcal{L} \\ 0 &= \nabla \cdot T(a) \end{aligned} \quad\quad\quad(26)

The adjoint \bar{T} of the tensor can be calculated from the definition

\begin{aligned}\nabla \cdot T(a) = a \cdot \bar{T}(\nabla) \end{aligned} \quad\quad\quad(28)

Somewhat unintuitively, this is a function of the gradient. Playing around with factoring out the displacement vector a from (26) that the energy momentum adjoint essentially provides an expansion of the gradient of the Lagrangian. To prepare, let’s introduce some helper notation

\begin{aligned}\Pi_\beta \equiv \gamma_\alpha \frac{\partial {\mathcal{L}}}{\partial {(\partial_\alpha A^\beta)}} \end{aligned} \quad\quad\quad(29)

With this our Noether current equation becomes

\begin{aligned}\nabla \cdot T(a) &= \left\langle{{ \nabla T(a) }}\right\rangle \\ &= \left\langle{{ \nabla (\Pi_\beta (a \cdot \nabla) A^\beta - a \nabla \mathcal{L} ) }}\right\rangle \\ &= \left\langle{{ \nabla \left(\frac{1}{{2}} \Pi_\beta (a (\nabla A^\beta) + (\nabla A^\beta) a) - a \mathcal{L} \right) }}\right\rangle \\  \end{aligned}

Cyclic permutation of the vector products \left\langle{{a b c}}\right\rangle = \left\langle{{ c a b}}\right\rangle can be used in the scalar selection. This is a little more tractable with some helper notation for the A^\beta gradients, say v^\beta = \nabla A^\beta. Because of the operator nature of the gradient once the vector order is permuted we have to allow for the gradient to act left or right or both, so arrows are used to disambiguate this where appropriate.

\begin{aligned}\nabla \cdot T(a) &= \left\langle{{ \nabla \left(\frac{1}{{2}} \Pi_\beta a v^\beta +\Pi_\beta v^\beta a \right) - \nabla \mathcal{L} a }}\right\rangle \\ &= \left\langle{{ \left( \frac{1}{{2}} v^\beta \stackrel{ \leftrightarrow }\nabla \Pi_\beta \frac{1}{{2}} \nabla (\Pi_\beta v^\beta)- \nabla \mathcal{L} \right) a }}\right\rangle \\ &=a \cdot \left( \frac{1}{{2}} {\left\langle{{ v^\beta \stackrel{ \leftrightarrow }\nabla \Pi_\beta + \nabla (\Pi_\beta v^\beta) }}\right\rangle}_{1} - \nabla \mathcal{L} \right) \end{aligned}

This dotted with quantity is the adjoint of the canonical energy momentum tensor

\begin{aligned}\bar{T}(\nabla) &=\frac{1}{{2}} {\left\langle{{ v^\beta \stackrel{ \leftrightarrow }\nabla \Pi_\beta + \nabla (\Pi_\beta v^\beta) }}\right\rangle}_{1} - \nabla \mathcal{L}  \end{aligned} \quad\quad\quad(30)

This can however, be expanded further. First tackling the
bidirectional gradient vector term we can utilize the property that the reverse of a vector leaves the vector unchanged. This gives us

\begin{aligned}{\left\langle{{ v^\beta \stackrel{ \leftrightarrow }\nabla \Pi_\beta }}\right\rangle}_{1}&={\left\langle{{ v^\beta (\stackrel{ \rightarrow }\nabla \Pi_\beta) }}\right\rangle}_{1}+{\left\langle{{ (v^\beta \stackrel{ \leftarrow }\nabla) \Pi_\beta }}\right\rangle}_{1} \\ &={\left\langle{{ v^\beta (\stackrel{ \rightarrow }\nabla \Pi_\beta) }}\right\rangle}_{1}+{\left\langle{{ \Pi_\beta (\stackrel{ \rightarrow }\nabla v^\beta) }}\right\rangle}_{1} \\  \end{aligned}

In the remaining term, using the Hestenes overdot notation clarify the scope of the operator, we have

\begin{aligned}\bar{T}(\nabla) &=\frac{1}{{2}} \left({\left\langle{{ v^\beta (\nabla \Pi_\beta) }}\right\rangle}_{1}+{\left\langle{{ \Pi_\beta (\nabla v^\beta) }}\right\rangle}_{1} +{\left\langle{{ (\nabla \Pi_\beta) v^\beta }}\right\rangle}_{1} + {\left\langle{{ \nabla' \Pi_\beta {v^\beta}'}}\right\rangle}_{1} \right)- \nabla \mathcal{L} \\  \end{aligned}

The grouping of the first and third terms above simplifies nicely

\begin{aligned}\frac{1}{{2}}{\left\langle{{ v^\beta (\nabla \Pi_\beta) }}\right\rangle}_{1} +\frac{1}{{2}} {\left\langle{{ (\nabla \Pi_\beta) v^\beta }}\right\rangle}_{1} &=v^\beta (\nabla \cdot \Pi_\beta) +\frac{1}{{2}} {\left\langle{{ v^\beta (\nabla \wedge \Pi_\beta) }}\right\rangle}_{1} +{\left\langle{{ (\nabla \wedge \Pi_\beta) v^\beta }}\right\rangle}_{1}  \\  \end{aligned}

Since a (b \wedge c) + (b \wedge c) a = 2 a \wedge b \wedge c, which is purely a trivector, the vector grade selection above is zero. This leaves the adjoint reduced to

\begin{aligned}\bar{T}(\nabla) &=v^\beta (\nabla \cdot \Pi_\beta) +\frac{1}{{2}} \left({\left\langle{{ \Pi_\beta (\nabla v^\beta) }}\right\rangle}_{1} + {\left\langle{{ \nabla' \Pi_\beta {v^\beta}'}}\right\rangle}_{1} \right)- \nabla \mathcal{L} \\  \end{aligned}

For the remainder vector grade selection operators we have something that is of the following form

\begin{aligned}\frac{1}{{2}} {\left\langle{{ a b c + b a c }}\right\rangle}_{1} = (a \cdot b ) c \end{aligned}

And we are finally able to put the adjoint into a form that has no remaining grade selection operators

\begin{aligned}\bar{T}(\nabla)&= (\nabla A^\beta) (\nabla \cdot \Pi_\beta) +(\Pi_\beta \cdot \nabla) (\nabla A^\beta) -\nabla \mathcal{L} \\ &= (\nabla A^\beta) (\stackrel{ \rightarrow }\nabla \cdot \Pi_\beta) +(\nabla A^\beta) (\stackrel{ \leftarrow }\nabla \cdot \Pi_\beta) -\nabla \mathcal{L} \\ &= (\nabla A^\beta) (\stackrel{ \leftrightarrow }\nabla \cdot \Pi_\beta) -\nabla \mathcal{L}  \end{aligned}

Recapping, we have for the tensor and its adjoint

\begin{aligned}0 &= \nabla \cdot T(a) = a \cdot \bar{T}(\nabla)   \\ \Pi_\beta &\equiv \gamma_\alpha \frac{\partial {\mathcal{L}}}{\partial {(\partial_\alpha A^\beta)}} \\ T(a) &= \Pi_\beta (a \cdot \nabla) A^\beta - a \nabla \mathcal{L}  \\ \bar{T}(\nabla) &= (\nabla A^\beta) (\stackrel{ \leftrightarrow }\nabla \cdot \Pi_\beta) - \nabla \mathcal{L}  \end{aligned} \quad\quad\quad(31)

For the adjoint, since a \cdot \bar{T}(\nabla) = 0 for all a, we must also have \bar{T}(\nabla) = 0, which means the adjoint of the canonical energy momentum tensor really provides not much more than a recipe for computing the Lagrangian gradient

\begin{aligned}\nabla \mathcal{L} &= (\nabla A^\beta) (\stackrel{ \leftrightarrow }\nabla \cdot \Pi_\beta) \end{aligned} \quad\quad\quad(35)

Having seen the adjoint notation, it was natural to see what this was for a multiple scalar field variable Lagrangian, even if it is not intrinsically useful. Observe that the identity (35), obtained so laboriously, is not more than syntactic sugar for the chain rule expansion of the Lagrangian partials (plus application of the Euler-Lagrange field equations). We could obtain this directly if desired much more easily than by factoring out a from \nabla \cdot T(a) = 0.

\begin{aligned}\partial_\mu \mathcal{L}&=\frac{\partial {\mathcal{L}}}{\partial {A^\beta}} \partial_\mu A^\beta+\frac{\partial {\mathcal{L}}}{\partial {(\partial_\alpha A^\beta)}} \partial_\mu \partial_\alpha A^\beta \\ &=\left( \partial_\alpha \frac{\partial {\mathcal{L}}}{\partial {(\partial_\alpha A^\beta)}} \right) \partial_\mu A^\beta+\frac{\partial {\mathcal{L}}}{\partial {(\partial_\alpha A^\beta)}} \partial_\alpha \partial_\mu A^\beta \\ &=\partial_\alpha\left(\left( \frac{\partial {\mathcal{L}}}{\partial {(\partial_\alpha A^\beta)}} \right) \partial_\mu A^\beta\right) \\  \end{aligned}

Summing over \mu for the gradient, this reproduces (35), with much less work

\begin{aligned}\nabla \mathcal{L} &= \gamma^\mu \partial_\mu \mathcal{L} \\ &=\partial_\alpha\left(\left( \frac{\partial {\mathcal{L}}}{\partial {(\partial_\alpha A^\beta)}} \right) (\nabla A^\beta)\right) \\ &=(\Pi_\beta \cdot \stackrel{ \leftrightarrow }\nabla) (\nabla A^\beta) \end{aligned}

Observe that the Euler-Lagrange field equations are implied in this relationship, so perhaps it has some utility. Also note that while it is simpler to directly compute this, without having started with the canonical energy momentum tensor, we would not know how the two of these were related.

References

[4] C. Doran and A.N. Lasenby. Geometric algebra for physicists. Cambridge University Press New York, Cambridge, UK, 1st edition, 2003.

Posted in Math and Physics Learning. | Tagged: , , , , | Leave a Comment »

Existence of a symmetry for translational variation.

Posted by peeterjoot on September 12, 2009

[Click here for a PDF of this sequence of posts with nicer formatting]

Considering an example Lagrangian we found that there was a symmetry provided we could commute the variational derivative with the gradient

\begin{aligned}\frac{\delta }{\delta \phi} \mathbf{a} \cdot \boldsymbol{\nabla} \mathcal{L}&=\mathbf{a} \cdot \boldsymbol{\nabla} \frac{\delta \mathcal{L}}{\delta \phi}  \end{aligned}

What this really means is not clear in general and a better answer to the existence question for incremental translation can be had by considering the transformation of the action directly around the stationary fields.

Without really any loss of generality we can consider an action with a four dimensional spacetime volume element, and apply the incremental translation operator to this

\begin{aligned}\int &d^4 x a \cdot \nabla \mathcal{L}( A^\beta + \bar{A}^\beta, \partial_\alpha A^\beta + \partial_\alpha \bar{A}^\beta) \\ &=\int d^4 x a \cdot \nabla \mathcal{L}( \bar{A}^\beta, \partial_\alpha \bar{A}^\beta)+\int d^4 x a \cdot \nabla \left(\frac{\partial {\mathcal{L}}}{\partial {A^\beta}} \bar{A^\beta}+\frac{\partial {\mathcal{L}}}{\partial {(\partial_\alpha A^\beta)}} \partial_\alpha \bar{A^\beta}\right)+ \cdots \end{aligned}

For the first term we have a \cdot \nabla \int d^4 x \mathcal{L}( \bar{A}^\beta, \partial_\alpha \bar{A}^\beta), but this integral is our stationary action. The remainder, to first order in the field variables, can then be expanded and integrated by parts

\begin{aligned}\int &d^4 x a^\mu \partial_\mu \left(\frac{\partial {\mathcal{L}}}{\partial {A^\beta}} \bar{A^\beta}+\frac{\partial {\mathcal{L}}}{\partial {(\partial_\alpha A^\beta)}} \partial_\alpha \bar{A^\beta}\right) \\ &=\int d^4 x a^\mu \left(\left( \partial_\mu \frac{\partial {\mathcal{L}}}{\partial {A^\beta}} \right) \bar{A^\beta}+\frac{\partial {\mathcal{L}}}{\partial {A^\beta}} \left( \partial_\mu \bar{A^\beta} \right)+\left( \partial_\mu \frac{\partial {\mathcal{L}}}{\partial {(\partial_\alpha A^\beta)}} \right) \partial_\alpha \bar{A^\beta}+\frac{\partial {\mathcal{L}}}{\partial {(\partial_\alpha A^\beta)}} \left( \partial_\mu \partial_\alpha \bar{A^\beta} \right)\right) \\ &=\int d^4 x \left(\left( a^\mu \partial_\mu \frac{\partial {\mathcal{L}}}{\partial {A^\beta}} \right) \bar{A^\beta}-\left( \partial_\mu a^\mu \frac{\partial {\mathcal{L}}}{\partial {A^\beta}} \right)\bar{A^\beta} +\left( \partial_\mu \frac{\partial {\mathcal{L}}}{\partial {(\partial_\alpha A^\beta)}} \right) \partial_\alpha \bar{A^\beta}-\left( \partial_\mu a^\mu \frac{\partial {\mathcal{L}}}{\partial {(\partial_\alpha A^\beta)}} \right) \partial_\alpha \bar{A^\beta} \right) \\  \end{aligned}

Since a^\mu are constants, this is zero, so there can be no contribution to the field equations by the addition of the translation increment to the Lagrangian.

Posted in Math and Physics Learning. | Tagged: , , , , | Leave a Comment »

On the existence of the symmetry for rotationally altered field Lagrangian

Posted by peeterjoot on September 9, 2009

[Click here for a PDF of this sequence of posts with nicer formatting]

General existence of the rotational symmetry.

The previous example hints at a general method to demonstrate that the incremental Lorentz transform produces a symmetry (which was assumed). It will be sufficient to consider the variation around the stationary field variables for the change due to the action from the incremental rotation operator. That is

\begin{aligned}\delta S = \int d^4 x (i \cdot x) \cdot \nabla \mathcal{L}( A^\beta + \bar{A}^\beta, \partial_\alpha A^\beta + \partial_\alpha \bar{A}^\beta) \end{aligned} \quad\quad\quad(42)

Performing a first order Taylor expansion of the Lagrangian around the stationary field variables we have

\begin{aligned}\delta S &= \int d^4 x (i \cdot x) \cdot \gamma^\mu \partial_\mu \mathcal{L}( A^\beta + \bar{A}^\beta, \partial_\alpha A^\beta + \partial_\alpha \bar{A}^\beta) \\ &= \int d^4 x (i \cdot x) \cdot \gamma^\mu \partial_\mu \left(\frac{\partial {\mathcal{L}}}{\partial {A^\beta}} \bar{A}^\beta+\frac{\partial {\mathcal{L}}}{\partial {(\partial_\alpha A^\beta)}} (\partial_\alpha \bar{A}^\beta)\right) \\ &= \int d^4 x (i \cdot x) \cdot \gamma^\mu \left(\left(\partial_\mu \frac{\partial {\mathcal{L}}}{\partial {A^\beta}}\right) \bar{A}^\beta+\frac{\partial {\mathcal{L}}}{\partial {A^\beta}} \partial_\mu \bar{A}^\beta+\left(\partial_\mu \frac{\partial {\mathcal{L}}}{\partial {(\partial_\alpha A^\beta)}}\right) (\partial_\alpha \bar{A}^\beta)+\frac{\partial {\mathcal{L}}}{\partial {(\partial_\alpha A^\beta)}} \partial_\mu (\partial_\alpha \bar{A}^\beta)\right) \\  \end{aligned}

Doing the integration by parts we have

\begin{aligned}\delta S &= \int d^4 x \bar{A}^\beta \gamma^\mu \cdot \left((i \cdot x) \left(\partial_\mu \frac{\partial {\mathcal{L}}}{\partial {A^\beta}}\right) -\partial_\mu \left(\frac{\partial {\mathcal{L}}}{\partial {A^\beta}} (i \cdot x)\right)\right) \\ &+\int d^4 x (\partial_\alpha \bar{A}^\beta) \gamma^\mu \cdot \left((i \cdot x) \left(\partial_\mu \frac{\partial {\mathcal{L}}}{\partial {(\partial_\alpha A^\beta)}}\right) -\partial_\mu \left( \frac{\partial {\mathcal{L}}}{\partial {(\partial_\alpha A^\beta)}} (i \cdot x) \right)\right) \\ &=\int d^4 x \bar{A}^\beta \left((i \cdot x) \cdot \nabla\frac{\partial {\mathcal{L}}}{\partial {A^\beta}}- \nabla \cdot (i \cdot x) \frac{\partial {\mathcal{L}}}{\partial {A^\beta}} \right) +(\partial_\alpha \bar{A}^\beta)\left((i \cdot x) \cdot \nabla\frac{\partial {\mathcal{L}}}{\partial {(\partial_\alpha A^\beta)}}- \nabla \cdot (i \cdot x) \frac{\partial {\mathcal{L}}}{\partial {(\partial_\alpha A^\beta)}} \right)  \end{aligned}

Since (i \cdot x) \cdot \nabla f = \nabla \cdot (i \cdot x) f for any f, there is no change to the resulting field equations due to this incremental rotation, so we have a symmetry for any Lagrangian that is first order in its derivatives.

Posted in Math and Physics Learning. | Tagged: , , , , | Leave a Comment »

(CORRECTED) Noether current for incremental Lorentz transformation.

Posted by peeterjoot on September 8, 2009

Had logic errors in previous post on the same. Corrected here (replacing the pdf version, but retaining the previous mistaken notes).

Guts

[Click here for a PDF of this sequence of posts with nicer formatting]

Let’s assume that we can use the exponential generator of rotations

\begin{aligned}e^{(i \cdot x) \cdot \nabla} = 1 + (i \cdot x) \cdot \nabla + \cdots \end{aligned} \quad\quad\quad(25)

to alter a Lagrangian density.

In particular, that we can use the first order approximation of this Taylor series, applying the incremental rotation operator (i \cdot x) \cdot \nabla = i \cdot (x \wedge \nabla) to transform the Lagrangian.

\begin{aligned}\mathcal{L} \rightarrow \mathcal{L} + (i \cdot x) \cdot \nabla \mathcal{L} \end{aligned} \quad\quad\quad(26)

Suppose that we parametrize the rotation bivector i using two perpendicular unit vectors u, and v. Here perpendicular is in the sense u v = -v u so that i = u \wedge v = u v. For the bivector expressed this way our incremental rotation operator takes the form

\begin{aligned}(i \cdot x) \cdot \nabla &=((u \wedge v) \cdot x) \cdot \nabla \\ &=(u (v \cdot x) - v (u \cdot x)) \cdot \nabla \\ &=(v \cdot x) u \cdot \nabla - (u \cdot x)) v \cdot \nabla \\  \end{aligned}

The operator is reduced to a pair of torque-like scaled directional derivatives, and we’ve already examined the Noether currents for the translations induced by the directional derivatives. It’s not unreasonable to take exactly the same approach to consider rotation symmetries as we did for translation. We found for incremental translations

\begin{aligned}a \cdot \nabla \mathcal{L}&=\partial_\alpha \left(\frac{\partial {\mathcal{L}}}{\partial {(\partial_\alpha A^\beta)}} (a \cdot \nabla) {A^\beta}\right)  \end{aligned} \quad\quad\quad(27)

So for incremental rotations the change to the Lagrangian is

\begin{aligned}(i \cdot x) \cdot \nabla \mathcal{L}&=(v \cdot x)\partial_\alpha \left(\frac{\partial {\mathcal{L}}}{\partial {(\partial_\alpha A^\beta)}} (u \cdot \nabla) {A^\beta}\right) -(u \cdot x)\partial_\alpha \left(\frac{\partial {\mathcal{L}}}{\partial {(\partial_\alpha A^\beta)}} (v \cdot \nabla) {A^\beta}\right)  \end{aligned} \quad\quad\quad(28)

Since the choice to make u and v both unit vectors and perpendicular has been made, there is really no loss in generality to align these with a pair of the basis vectors, say u = \gamma_\mu and v = \gamma_\nu.

The incremental rotation operator is reduced to

\begin{aligned}(i \cdot x) \cdot \nabla &=(\gamma_\nu \cdot x) \gamma_\mu \cdot \nabla - (\gamma_\mu \cdot x)) \gamma_\nu \cdot \nabla \\ &=x_\nu \partial_\mu - x_\mu \partial_\nu \\  \end{aligned}

Similarly the change to the Lagrangian is

\begin{aligned}(i \cdot x) \cdot \nabla \mathcal{L}&=x_\nu\partial_\alpha \left(\frac{\partial {\mathcal{L}}}{\partial {(\partial_\alpha A^\beta)}} \partial_\mu {A^\beta}\right) -x_\mu\partial_\alpha \left(\frac{\partial {\mathcal{L}}}{\partial {(\partial_\alpha A^\beta)}} \partial_\nu {A^\beta}\right)  \end{aligned} \quad\quad\quad(29)

Subtracting the two, essentially forming (i \cdot x) \cdot \nabla \mathcal{L} - (i \cdot x) \cdot \nabla \mathcal{L} = 0, we have

\begin{aligned}0 =x_\nu\partial_\alpha \left(\frac{\partial {\mathcal{L}}}{\partial {(\partial_\alpha A^\beta)}} \partial_\mu {A^\beta}- {\delta^\alpha}_\mu \mathcal{L}\right) -x_\mu\partial_\alpha \left(\frac{\partial {\mathcal{L}}}{\partial {(\partial_\alpha A^\beta)}} \partial_\nu {A^\beta}- {\delta^\alpha}_\nu \mathcal{L}\right)  \end{aligned} \quad\quad\quad(30)

We previously wrote

\begin{aligned}{T^\alpha}_\nu &= \frac{\partial {\mathcal{L}}}{\partial {(\partial_\alpha A^\beta)}} \partial_\nu A^\beta - {\delta^\alpha}_\nu \mathcal{L} \\  \end{aligned}

for the Noether current of spacetime translation, and with that our conservation equation becomes

\begin{aligned}0 = x_\nu \partial_\alpha {T^\alpha}_\mu - x_\mu \partial_\alpha {T^\alpha}_\nu \end{aligned} \quad\quad\quad(31)

As is, this doesn’t really appear to say much, since we previously also found \partial_\alpha {T^\alpha}_\nu = 0. We appear to need a way to pull the x coordinates into the derivatives to come up with a more interesting statement. A test expansion of \nabla \cdot (i \cdot x) \mathcal{L} to see what is left over compared to (i \cdot x) \cdot \nabla \mathcal{L} shows that there is in fact no difference, and we actually have the identity

\begin{aligned}i \cdot (x \wedge \nabla) \mathcal{L} = (i \cdot x) \cdot \nabla \mathcal{L} = \nabla \cdot (i \cdot x) \mathcal{L} \end{aligned} \quad\quad\quad(32)

This suggests that we can pull the x coordinates into the derivatives of (31) as in

\begin{aligned}0 = \partial_\alpha \left( {T^\alpha}_\mu x_\nu - {T^\alpha}_\nu x_\mu \right) \end{aligned} \quad\quad\quad(33)

However, expanding this derivative shows that this is fact not the case. Instead we have

\begin{aligned}\partial_\alpha \left( {T^\alpha}_\mu x_\nu - {T^\alpha}_\nu x_\mu \right) &={T^\alpha}_\mu \partial_\alpha x_\nu - {T^\alpha}_\nu \partial_\alpha x_\mu  \\ &={T^\alpha}_\mu \eta_{\alpha\nu}- {T^\alpha}_\nu \eta_{\alpha\mu}  \\ &=T_{\nu\mu} - T_{\mu\nu} \end{aligned}

So instead of a Noether current, following the procedure used to calculate the spacetime translation current, we have only a mediocre compromise

\begin{aligned}{M^{\alpha}}_{\mu\nu} &\equiv {T^\alpha}_\mu x_\nu - {T^\alpha}_\nu x_\mu \\ \partial_\alpha {M^{\alpha}}_{\mu\nu} &= T_{\nu\mu} - T_{\mu\nu} \end{aligned} \quad\quad\quad(34)

Jackson ([4]) ends up with a similar index upper expression

\begin{aligned}M^{\alpha\beta\gamma} &\equiv T^{\alpha\beta} x^\gamma - T^{\alpha\gamma} x^\beta \\  \end{aligned} \quad\quad\quad(36)

and then uses a requirement for vanishing 4-divergence of this quantity

\begin{aligned}0 &= \partial_\alpha M^{\alpha\beta\gamma} \end{aligned} \quad\quad\quad(38)

to symmetrize this tensor by subtracting off all the antisymmetric portions. The differences compared to Jackson with upper verses lower indexes are minor for we can follow the same arguments and arrive at the same sort of 0 - 0 = 0 result as we had in (31)

\begin{aligned}0 = x^\nu \partial_\alpha T^{\alpha\mu} - x^\mu \partial_\alpha T^{\alpha\nu} \end{aligned} \quad\quad\quad(39)

The only difference is that our not-really-a-conservation equation becomes

\begin{aligned}\partial_\alpha M^{\alpha\mu\nu} =  T^{\nu\mu} - T^{\mu\nu} \end{aligned} \quad\quad\quad(40)

An example of the symmetry.

While not a proof that application of the incremental rotation operator is a symmetry, an example at least provides some comfort that this is a reasonable thing to attempt. Again, let’s consider the Coulomb Lagrangian

\begin{aligned}\mathcal{L} = \frac{1}{{2}} (\boldsymbol{\nabla} \phi)^2 - \frac{1}{{\epsilon_0}}\rho \phi \end{aligned}

For this we have

\begin{aligned}\mathcal{L}' &= \mathcal{L} + (i \cdot \mathbf{x}) \cdot \boldsymbol{\nabla} \mathcal{L} \\ &= \mathcal{L} - (i \cdot \mathbf{x}) \cdot \frac{1}{{\epsilon_0}} \left( \rho \boldsymbol{\nabla} \phi + \phi \boldsymbol{\nabla} \rho \right) \end{aligned}

If the variational derivative of the incremental rotation contribution is zero, then we have a symmetry.

\begin{aligned}\frac{\delta }{\delta \phi} (i \cdot \mathbf{x}) \cdot \boldsymbol{\nabla} \mathcal{L} \\ &=(i \cdot \mathbf{x}) \cdot \frac{1}{{\epsilon_0}} \boldsymbol{\nabla} \rho - \sum_m \partial_m \left( (i \cdot \mathbf{x}) \cdot \frac{1}{{\epsilon_0}} \rho \mathbf{e}_m \right) \\ &=(i \cdot \mathbf{x}) \cdot \frac{1}{{\epsilon_0}} \boldsymbol{\nabla} \rho - \boldsymbol{\nabla} \cdot \left( (i \cdot \mathbf{x}) \frac{1}{{\epsilon_0}} \rho \right) \\  \end{aligned}

As found in (32), we have (i \cdot \mathbf{x}) \cdot \boldsymbol{\nabla} = \boldsymbol{\nabla} \cdot (i \cdot \mathbf{x}), so we have

\begin{aligned}\frac{\delta }{\delta \phi} (i \cdot \mathbf{x}) \cdot \boldsymbol{\nabla} \mathcal{L} = 0 \end{aligned} \quad\quad\quad(41)

for this specific Lagrangian as expected.

Note that the test expansion I used to state (32) was done using only the bivector i = \gamma_\mu \wedge \gamma_\nu. An expansion with i = u^\alpha u^\beta \gamma_\alpha \wedge \gamma_\beta shows that this is also the case in shows that this is true more generally. Specifically, this expansion gives

\begin{aligned}\nabla \cdot (i \cdot x) \mathcal{L} &= (i \cdot x) \cdot \nabla \mathcal{L} + (\eta_{\alpha\beta} - \eta_{\beta\alpha}) u^\alpha v^\beta \mathcal{L} \\ &= (i \cdot x) \cdot \nabla \mathcal{L}  \end{aligned}

(since the metric tensor is symmetric).

Loosely speaking, the geometric reason for this is that \nabla \cdot f(x) takes its maximum (or minimum) when f(x) is colinear with x and is zero when f(x) is perpendicular to x. The vector i \cdot x is a combined projection and 90 degree rotation in the plane of the bivector, and the divergence is left with no colinear components to operate on.

While this commutation of the i \cdot \mathbf{x} with the divergence operator didn’t help with finding the Noether current, it does at least show that we have a symmetry. Demonstrating the invariance for the general Lagrangian (at least the single field variable case) likely follows the same procedure as in this specific example above.

References

[4] JD Jackson. Classical Electrodynamics Wiley. 2nd edition, 1975.

Posted in Math and Physics Learning. | Tagged: , , , , | Leave a Comment »

Noether currents for incremental Lorentz transformation.

Posted by peeterjoot on September 8, 2009

[Click here for a (CORRECTED) PDF of this sequence of posts with nicer formatting]

Let’s assume that we can use the exponential generator of rotations

\begin{aligned}e^{(i \cdot x) \cdot \nabla} = 1 + (i \cdot x) \cdot \nabla + \cdots \end{aligned} \quad\quad\quad(25)

to alter a Lagrangian density. In particular, that we can use the first order approximation of this Taylor series, applying the incremental rotation operator (i \cdot x) \cdot \nabla = i \cdot (x \wedge \nabla) to transform the Lagrangian.

\begin{aligned}\mathcal{L} \rightarrow \mathcal{L} + (i \cdot x) \cdot \nabla \mathcal{L} \end{aligned} \quad\quad\quad(26)

Suppose that we parametrize the rotation bivector i using two perpendicular unit vectors u, and v. Here perpendicular is in the sense u v = -v u so that i = u \wedge v = u v. For the bivector expressed this way our incremental rotation operator takes the form

\begin{aligned}(i \cdot x) \cdot \nabla &=((u \wedge v) \cdot x) \cdot \nabla \\ &=(u (v \cdot x) - v (u \cdot x)) \cdot \nabla \\ &=(v \cdot x) u \cdot \nabla - (u \cdot x)) v \cdot \nabla \\  \end{aligned}

The operator is reduced to a pair of torque-like scaled directional derivatives, and we’ve already examined the Noether currents for the translations induced by the directional derivatives. It’s not unreasonable to take exactly the same approach to consider rotation symmetries as we did for translation. We found for incremental translations

\begin{aligned}a \cdot \nabla \mathcal{L}&=\partial_\alpha \left(\frac{\partial {\mathcal{L}}}{\partial {(\partial_\alpha A^\beta)}} (a \cdot \nabla) {A^\beta}\right)  \end{aligned} \quad\quad\quad(27)

So for incremental rotations the change to the Lagrangian is

\begin{aligned}(i \cdot x) \cdot \nabla \mathcal{L}&=(v \cdot x)\partial_\alpha \left(\frac{\partial {\mathcal{L}}}{\partial {(\partial_\alpha A^\beta)}} (u \cdot \nabla) {A^\beta}\right) -(u \cdot x)\partial_\alpha \left(\frac{\partial {\mathcal{L}}}{\partial {(\partial_\alpha A^\beta)}} (v \cdot \nabla) {A^\beta}\right)  \end{aligned} \quad\quad\quad(28)

Since the choice to make u and v both unit vectors and perpendicular has been made, there is really no loss in generality to align these with a pair of the basis vectors, say u = \gamma_\mu and v = \gamma_\nu.

The incremental rotation operator is reduced to

\begin{aligned}(i \cdot x) \cdot \nabla &=(\gamma_\nu \cdot x) \gamma_\mu \cdot \nabla - (\gamma_\mu \cdot x)) \gamma_\nu \cdot \nabla \\ &=x_\nu \partial_\mu - x_\mu \partial_\nu \\  \end{aligned}

Similarly the change to the Lagrangian is

\begin{aligned}(i \cdot x) \cdot \nabla \mathcal{L}&=x_\nu\partial_\alpha \left(\frac{\partial {\mathcal{L}}}{\partial {(\partial_\alpha A^\beta)}} \partial_\mu {A^\beta}\right) -x_\mu\partial_\alpha \left(\frac{\partial {\mathcal{L}}}{\partial {(\partial_\alpha A^\beta)}} \partial_\nu {A^\beta}\right)  \end{aligned} \quad\quad\quad(29)

Subtracting the two, essentially forming (i \cdot x) \cdot \nabla \mathcal{L} - (i \cdot x) \cdot \nabla \mathcal{L} = 0, we have

\begin{aligned}0 =x_\nu\partial_\alpha \left(\frac{\partial {\mathcal{L}}}{\partial {(\partial_\alpha A^\beta)}} \partial_\mu {A^\beta}- {\delta^\alpha}_\mu \mathcal{L}\right) -x_\mu\partial_\alpha \left(\frac{\partial {\mathcal{L}}}{\partial {(\partial_\alpha A^\beta)}} \partial_\nu {A^\beta}- {\delta^\alpha}_\nu \mathcal{L}\right)  \end{aligned} \quad\quad\quad(30)

We previously wrote

\begin{aligned}{T^\alpha}_\nu &= \frac{\partial {\mathcal{L}}}{\partial {(\partial_\alpha A^\beta)}} \partial_\nu A^\beta - {\delta^\alpha}_\nu \mathcal{L} \\  \end{aligned}

for the Noether current of spacetime translation, and with that our conservation equation becomes

\begin{aligned}0 = x_\nu \partial_\alpha {T^\alpha}_\mu - x_\mu \partial_\alpha {T^\alpha}_\nu \end{aligned} \quad\quad\quad(31)

As is, this doesn’t really appear to say much, since we previously also found \partial_\alpha {T^\alpha}_\nu = 0. We appear to need a way to pull the x coordinates into the derivatives to come up with a more interesting statement. A test expansion of \nabla \cdot (i \cdot x) \mathcal{L} to see what is left over compared to (i \cdot x) \cdot \nabla \mathcal{L} shows that there is in fact no difference, and we actually have the identity

\begin{aligned}i \cdot (x \wedge \nabla) \mathcal{L} = (i \cdot x) \cdot \nabla \mathcal{L} = \nabla \cdot (i \cdot x) \mathcal{L} \end{aligned} \quad\quad\quad(32)

The geometric reason for this is that \nabla \cdot f(x) takes its maximum (or minimum) when f(x) is colinear with x and is zero when f(x) is perpendicular to x. The vector i \cdot x is a combined projection and 90 degree rotation in the plane of the bivector, and the divergence is left with no colinear components to operate on.

FIXME: bother showing this explicitly?

The end result is that we should be able to bring the x coordinates into the derivatives of (31) provided both are brought in. That gives us a more interesting conservation statement, something that has the looks of field angular momentum

\begin{aligned}0 = \partial_\alpha \left( x_\nu {T^\alpha}_\mu - x_\mu {T^\alpha}_\nu \right) \end{aligned} \quad\quad\quad(33)

The conservation identity could be summarized using

\begin{aligned}{M^{\alpha}}_{\mu\nu} &\equiv x_\nu {T^\alpha}_\mu - x_\mu {T^\alpha}_\nu \\ 0 &= \partial_\alpha {M^{\alpha}}_{\mu\nu}  \end{aligned} \quad\quad\quad(34)

FIXME: Jackson ([4]) states a similar index upper expression

\begin{aligned}M^{\alpha\mu\nu} &\equiv x_\nu T^{\alpha\mu} - x_\mu T^{\alpha\nu} \\ 0 &= \partial_\alpha M^{\alpha\mu\nu} \end{aligned} \quad\quad\quad(36)

should try to show that these are identical or understand the difference.

References

[4] JD Jackson. Classical Electrodynamics Wiley. 2nd edition, 1975.

Posted in Math and Physics Learning. | Tagged: , , , , | Leave a Comment »

Noether currents for translation transformations of field densities.

Posted by peeterjoot on September 7, 2009

[Click here for a PDF of this sequence of posts with nicer formatting]

Motivation

Previously summarized the derivations for the Euler-Lagrange relations for a field Lagrangian density and a single parameter Noether current. Move on to incremental translation, with eyes on examing incremental Lorentz transformation, and eventually both translation and rotation.

Spacetime translation symmetries and Noether currents.

Considering the effect of spacetime translation on the Lagrangian we examine the application of the first order linear Taylor series expansion shifting the vector parameters by an increment a. The Lagrangian alteration is

\begin{aligned}\mathcal{L} \rightarrow e^{a \cdot \nabla }\mathcal{L} \approx \mathcal{L} + a \cdot \nabla \mathcal{L} \end{aligned} \quad\quad\quad(15)

Similar to the addition of derivatives to the Lagrangians of dynamics, we can add in some types of total derivatives \partial_\mu F^\mu to the Lagrangian without changing the resulting field equations (i.e. there is an associated “symmetry” for this Lagrangian alteration). The directional derivative a \cdot \nabla \mathcal{L} = a^\mu \partial_\mu \mathcal{L} appears to be an example of a total derivative alteration that leaves the Lagrangian unchanged.

On the symmetry.

The fact that this translation necessarily results in the same field equations is not necessarily obvious. Using one of the simplest field Lagrangians, that of the Coulomb electrostatic law, we can illustrate that this is true in at least one case, and also see what is required in the general case

\begin{aligned}\mathcal{L} = \frac{1}{{2}} (\boldsymbol{\nabla} \phi)^2 - \frac{1}{{\epsilon_0}}\rho \phi = \frac{1}{{2}} \sum_m(\partial_m \phi)^2 - \frac{1}{{\epsilon_0}}\rho \phi \end{aligned} \quad\quad\quad(16)

With partials written \partial_m f = f_m we summarize the field Euler-Lagrange equations using the variational derivative

\begin{aligned}\frac{\delta }{\delta \phi} &=\frac{\partial }{\partial \phi} - \sum_m \partial_m \frac{\partial }{\partial \phi_m} \end{aligned} \quad\quad\quad(17)

Where the extremum condition {\delta \mathcal{L}}/{\delta \phi} = 0 produces the field equations.

For the Coulomb Lagrangian without (spatial) translation, we have

\begin{aligned}\frac{\delta \mathcal{L}}{\delta \phi} &=- \frac{1}{{\epsilon_0}}\rho - \partial_{mm} \phi  \end{aligned} \quad\quad\quad(18)

So the extremum condition {\delta \mathcal{L}}/{\delta \phi} = 0 gives

\begin{aligned}\boldsymbol{\nabla}^2 \phi = - \frac{1}{{\epsilon_0}}\rho  \end{aligned} \quad\quad\quad(19)

Equivalently, and probably more familiar, we write \mathbf{E} = -\boldsymbol{\nabla} \phi, and get the differential form of Coulomb’s law in terms of the electric field

\begin{aligned}\boldsymbol{\nabla} \cdot \mathbf{E} = \frac{1}{{\epsilon_0}}\rho  \end{aligned} \quad\quad\quad(20)

To consider the translation case we have to first evaluate the first order translation produced by the directional derivative. This is

\begin{aligned}\mathbf{a} \cdot \boldsymbol{\nabla} \mathcal{L} &= \sum_m a_m \partial_m \mathcal{L} \\ &= -\frac{\mathbf{a}}{\epsilon_0} \cdot (\rho \boldsymbol{\nabla} \phi + \phi \boldsymbol{\nabla} \rho) \end{aligned}

For the translation to be a symmetry the evaluation of the variational derivative must be zero. In this case we have

\begin{aligned}\frac{\delta }{\delta \phi} \mathbf{a} \cdot \boldsymbol{\nabla} \mathcal{L}&= -\frac{\mathbf{a}}{\epsilon_0} \cdot \frac{\delta }{\delta \phi} (\rho \boldsymbol{\nabla} \phi + \phi \boldsymbol{\nabla} \rho) \\ &= -\sum_m \frac{a_m}{\epsilon_0} \frac{\delta }{\delta \phi} (\rho \partial_m \phi + \phi \partial_m \rho) \\ &= -\sum_m \frac{a_m}{\epsilon_0} \left( \frac{\partial }{\partial \phi} - \sum_k \partial_k \frac{\partial }{\partial \phi_k}\right) (\rho \phi_m + \phi \rho_m) \\  \end{aligned}

We see that the \phi partials select only \rho derivatives whereas the \phi_k partials select only the \rho term. All told we have zero

\begin{aligned}\left( \frac{\partial }{\partial \phi} - \sum_k \partial_k \frac{\partial }{\partial \phi_k}\right) (\rho \phi_m + \phi \rho_m) &=\rho_m - \sum_k \partial_k \rho \delta_{km} \\ &=\rho_m - \partial_m \rho  \\ &= 0 \end{aligned}

This example illustrates that we have a symmetry provided we can “commute” the variational derivative with the gradient

\begin{aligned}\frac{\delta }{\delta \phi} \mathbf{a} \cdot \boldsymbol{\nabla} \mathcal{L}&=\mathbf{a} \cdot \boldsymbol{\nabla} \frac{\delta \mathcal{L}}{\delta \phi}  \end{aligned} \quad\quad\quad(21)

Since {\delta \mathcal{L}}/{\delta \phi} = 0 by construction, the resulting field equations are unaltered by such a modification.

Are there conditions where this commutation is not possible? Some additional exploration on symmetries associated with addition of derivatives to field Lagrangians was made previously in ([3]). After all was said and done, the conclusion motivated by this simple example was also reached. Namely, we require the commutation condition (21) between the variational derivative and the gradient of the Lagrangian.

Noether current derivation.

With the assumption that the Lagrangian translation induces a symmetry, we can proceed with the calculation of the Noether current. This procedure for deriving the Noether current for an incremental spacetime translation follows along similar lines as the scalar alteration considered previously.

We start with the calculation of the first order alteration, expanding the derivatives. Let’s work with a multiple field Lagrangian \mathcal{L} = \mathcal{L}(A^\beta, \partial_\alpha A^\beta) right from the start

\begin{aligned}a \cdot \nabla \mathcal{L}&=a^\mu \partial_\mu \mathcal{L} \\ &=a^\mu \left(\frac{\partial {\mathcal{L}}}{\partial {A^\sigma}} \frac{\partial {A^\sigma}}{\partial {x^\mu}}+\frac{\partial {\mathcal{L}}}{\partial {(\partial_\alpha A^\beta)}} \frac{\partial {(\partial_\alpha A^\beta)}}{\partial {x^\mu}}\right) \\  \end{aligned}

Using the Euler-Lagrange field equations in the first term, and switching integration order in the second this can be written as a single derivative

\begin{aligned}a \cdot \nabla \mathcal{L}&=a^\mu \left(\partial_\alpha \frac{\partial {\mathcal{L}}}{\partial {(\partial_\alpha A^\beta)}} \frac{\partial {A^\beta}}{\partial {x^\mu}}+\frac{\partial {\mathcal{L}}}{\partial {(\partial_\alpha A^\beta)}} \partial_\alpha \frac{\partial {A^\beta}}{\partial {x^\mu}}\right) \\ &=a^\mu \partial_\alpha \left(\frac{\partial {\mathcal{L}}}{\partial {(\partial_\alpha A^\beta)}} \frac{\partial {A^\beta}}{\partial {x^\mu}}\right) \\  \end{aligned}

In the scalar Noether current we were able to form an similar expression, but one that was a first order derivative that could be set to zero, to fix the conservation relationship. Here there’s no such freedom, but we can sneakily subtract a \cdot \nabla \mathcal{L} from itself to calculate such a zero

\begin{aligned}0 =\partial_\alpha \left(\frac{\partial {\mathcal{L}}}{\partial {(\partial_\alpha A^\beta)}} a^\mu \frac{\partial {A^\beta}}{\partial {x^\mu}} - a^\alpha \mathcal{L}\right)  \end{aligned} \quad\quad\quad(22)

Since this must hold for any vector a, we have the freedom to choose the simplest such vector, a unit vector a = \gamma_\nu, for which a^\mu = {\delta^\mu}_\nu. Our current and its zero divergence relationship then becomes

\begin{aligned}{T^\alpha}_\nu &= \frac{\partial {\mathcal{L}}}{\partial {(\partial_\alpha A^\beta)}} \partial_\nu A^\beta - {\delta^\alpha}_\nu \mathcal{L} \\ 0 &= \partial_\alpha {T^\alpha}_\nu  \end{aligned} \quad\quad\quad(23)

This isn’t the symmetric energy momentum tensor that we want in the electrodynamics context although it can be obtained from it by adding just the right zero.

TO BE CONTINUED: Noether current for incremental rotation.

References

[3] Peeter Joot. Canonical energy momentum tensor and Lagrangian translation [online]. http://sites.google.com/site/peeterjoot/math2009/stress_energy_noethers.pdf.

Posted in Math and Physics Learning. | Tagged: , , , , | Leave a Comment »