Peeter Joot's (OLD) Blog.

Math, physics, perl, and programming obscurity.

Quadratic Debye

Posted by peeterjoot on January 19, 2014

[Click here for a PDF of this post with nicer formatting]

Question: Quadratic Debye phonons (2013 midterm pr B2)

Assume a quadratic dispersion relation for the longitudinal and transverse modes

\begin{aligned}\omega = \left\{\begin{array}{l}b_{\mathrm{L}} q^2 \\ b_{\mathrm{T}} q^2\end{array}\right..\end{aligned} \hspace{\stretch{1}}(1.2)

Part a

Find the density of states.

Part b

Find the Debye frequency.

Part c

In terms of k_{\mathrm{B}} \Theta = \hbar \omega_{\mathrm{D}}, and

\begin{aligned}\mathcal{I} = \int_0^\infty \frac{y^{5/2} e^{y} dy}{\left( { e^y - 1} \right)^2 },\end{aligned} \hspace{\stretch{1}}(1.2)

find the specific heat for k_{\mathrm{B}} T \ll \hbar \omega_{\mathrm{D}}.

Part d

Find the specific heat for k_{\mathrm{B}} T \gg \hbar \omega_{\mathrm{D}}.

Answer

Part a

Working straight from the definition

\begin{aligned}Z(\omega) &= \frac{V}{(2 \pi)^3 } \sum_{L, T} \int \frac{df_\omega}{ \left\lvert { \boldsymbol{\nabla}_\mathbf{q} \omega } \right\rvert } \\ &= \frac{V}{(2 \pi)^3 } \left( { {\left.{{\frac{4 \pi q^2}{2 b_{\mathrm{L}} q} }}\right\vert}_{{\mathrm{L}}} + {\left.{{\frac{2 \times 4 \pi q^2}{2 b_{\mathrm{T}} q} }}\right\vert}_{{\mathrm{T}}} } \right) \\ &= \frac{V}{4 \pi^2 } \left( { \frac{q_{\mathrm{L}}}{b_{\mathrm{L}}} + \frac{2 q_{\mathrm{T}}}{b_{\mathrm{T}}} } \right).\end{aligned} \hspace{\stretch{1}}(1.3)

With q_{\mathrm{L}} = \sqrt{\omega/b_{\mathrm{L}}} and q_{\mathrm{T}} = \sqrt{\omega/b_{\mathrm{T}}}, this is

\begin{aligned}Z(\omega) = \frac{V}{4 \pi^2 } \left( { \frac{1}{b_{\mathrm{L}}^{3/2}} + \frac{2}{b_{\mathrm{T}}^{3/2}} } \right)\sqrt{\omega}\end{aligned} \hspace{\stretch{1}}(1.4)

Part b

The Debye frequency was given implicitly by

\begin{aligned}\int_0^{\omega_{\mathrm{D}}} Z(\omega) d\omega = 3 r N,\end{aligned} \hspace{\stretch{1}}(1.5)

which gives

\begin{aligned}3 r N=\frac{2}{3} \frac{V}{4 \pi^2 } \left( { \frac{1}{b_{\mathrm{L}}^{3/2}} + \frac{2}{b_{\mathrm{T}}^{3/2}} } \right)\omega_{\mathrm{D}}^{3/2}=\frac{V}{6 \pi^2 } \left( { \frac{1}{b_{\mathrm{L}}^{3/2}} + \frac{2}{b_{\mathrm{T}}^{3/2}} } \right)\omega_{\mathrm{D}}^{3/2}\end{aligned} \hspace{\stretch{1}}(1.6)

Part c

Assuming a Bose distribution and ignoring the zero point energy, which has no temperature dependence, the specific heat, the temperature derivative of the energy density, is

\begin{aligned}C_{\mathrm{V}} &= \frac{d}{d T} \frac{1}{{V}} \int Z(\omega) \frac{\hbar \omega}{ e^{\hbar \omega/ k_{\mathrm{B}} T } - 1} d\omega \\ &= \frac{1}{{V}} \frac{d}{d T} \int Z(\omega) \frac{\hbar \omega}{ \hbar \omega/ k_{\mathrm{B}} T + \frac{1}{{2}}( \hbar \omega/k_{\mathrm{B}} T)^2 + \cdots } d\omega \\ &\approx \frac{1}{{V}} \frac{d}{d T} \int Z(\omega) k_{\mathrm{B}} T d\omega \\ &= \frac{1}{{V}} k_{\mathrm{B}} 3 r N.\end{aligned} \hspace{\stretch{1}}(1.7)

Part d

First note that the density of states can be written

\begin{aligned}Z(\omega) = \frac{9 r N}{ 2 \omega_{\mathrm{D}}^{3/2} } \omega^{1/2},\end{aligned} \hspace{\stretch{1}}(1.8)

for a specific heat of

\begin{aligned}C_{\mathrm{V}} &= \frac{d}{d T} \frac{1}{{V}} \int_0^\infty \frac{9 r N}{ 2 \omega_{\mathrm{D}}^{3/2} } \omega^{1/2} \frac{\hbar \omega}{ e^{\hbar \omega/ k_{\mathrm{B}} T } - 1} d\omega \\ &= \frac{9 r N}{ 2 V \omega_{\mathrm{D}}^{3/2} } \int_0^\infty d\omega \omega^{1/2} \frac{d}{d T} \frac{\hbar \omega}{ e^{\hbar \omega/ k_{\mathrm{B}} T } - 1} \\ &= \frac{9 r N}{ 2 V \omega_{\mathrm{D}}^{3/2} } \int_0^\infty d\omega \omega^{1/2} \frac{-\hbar \omega}{ \left( {e^{\hbar \omega/ k_{\mathrm{B}} T } - 1} \right)^2 }  e^{\hbar \omega/k_{\mathrm{B}} T} \hbar \omega/k_{\mathrm{B}} \left( {-\frac{1}{{T^2}}} \right) \\ &= \frac{9 r N k_{\mathrm{B}} }{ 2 V \omega_{\mathrm{D}}^{3/2} } \left( { \frac{ k_{\mathrm{B}} T}{\hbar} } \right)^{3/2}\int_0^\infty d \frac{\hbar \omega}{k_{\mathrm{B}} T} \left( {\frac{\hbar \omega}{k_{\mathrm{B}} T}} \right)^{1/2} \frac{1}{ \left( {e^{\hbar \omega/ k_{\mathrm{B}} T } - 1} \right)^2 }  e^{\hbar \omega/k_{\mathrm{B}} T} \left( { \frac{\hbar \omega}{k_{\mathrm{B}} T} } \right)^2 \\ &= \frac{9 r N k_{\mathrm{B}} }{ 2 V \omega_{\mathrm{D}}^{3/2} } \left( { \frac{ k_{\mathrm{B}} T}{\hbar} } \right)^{3/2}\int_0^\infty dy \frac{y^{5/2} e^y }{ \left( {e^y - 1} \right)^2 } \\& = \frac{9 r N k_{\mathrm{B}} }{ 2 V } \left( { \frac{ T}{\Theta} } \right)^{3/2} \mathcal{I}.\end{aligned} \hspace{\stretch{1}}(1.9)

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google+ photo

You are commenting using your Google+ account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

 
%d bloggers like this: