## An updated compilation of notes, for ‘PHY452H1S Basic Statistical Mechanics’, Taught by Prof. Arun Paramekanti

Posted by peeterjoot on March 27, 2013

Here’s my second update of my notes compilation for this course, including all of the following:

March 27, 2013 Fermi gas

March 26, 2013 Fermi gas thermodynamics

March 26, 2013 Fermi gas thermodynamics

March 23, 2013 Relativisitic generalization of statistical mechanics

March 21, 2013 Kittel Zipper problem

March 18, 2013 Pathria chapter 4 diatomic molecule problem

March 17, 2013 Gibbs sum for a two level system

March 16, 2013 open system variance of N

March 16, 2013 probability forms of entropy

March 14, 2013 Grand Canonical/Fermion-Bosons

March 13, 2013 Quantum anharmonic oscillator

March 12, 2013 Grand canonical ensemble

March 11, 2013 Heat capacity of perturbed harmonic oscillator

March 10, 2013 Langevin small approximation

March 10, 2013 Addition of two one half spins

March 10, 2013 Midterm II reflection

March 07, 2013 Thermodynamic identities

March 06, 2013 Temperature

March 05, 2013 Interacting spin

plus everything detailed in the description of my first update and before.

### Like this:

Like Loading...

*Related*

This entry was posted on March 27, 2013 at 10:23 pm and is filed under Math and Physics Learning..
Tagged: addition of angular momentum, addition of spin, angular momentum, anharmonic oscillator, average, average diatomic separation, average dipole moment, average energy, average number of particles, average occupancy, binomial distribution, Boltzmann distribution, Boltzmann factor, Boson, canonical ensemble, Central limit theorem, chemical potential, classical harmonic oscillator, degeneracy pressure, delta function, density, density of states, diatomic molecule gas, differential form, eigenvalue, eigenvector, electric dipole, electric field interaction, electron, energy, energy eigenstate, energy eigenvalue, entropic force, entropy, equilibrium, Fermi distribution, Fermi energy, Fermi gas, Fermi temperature, Fermion, four momentum, four vector, free energy, fugacity, Gaussian approximation, Gibbs sum, grand canonical ensemble, grand canonical partition, grand partition function, graphene, hamiltonian, harmonic oscillator perturbation, heat capacity, high temperature limit, hole, ideal gas, integral approximation to sum, low temperature limit, magnetic field, magnetization, mean energy, microstate, moment of inertia, momentum, multiple paired spin, nuclear spin interaction, number of particles, number operator, occupancy, occupation number, occupation numbers, one form, orthonormal basis, partial derivative, particle in a box, Partition function, Pathria, pauli matrix, perturbation, PHY452H1S, Planck's constant, polymer, position mean value, pressure, probability, quantum anharmonic oscillator, random walk, relativistic gas, reservoir, singlet state, special relativity, specific heat, spherical harmonic, spin, spin hamiltonian, spin one half, spring constant, Statistics mechanics, subsystem, temperature, thermal average energy, thermal de Broglie wavelength, thermodynamic identity, trace, triplet states, two form, two variable Taylor expansion, variance, volume, zipper DNA model. You can follow any responses to this entry through the RSS 2.0 feed.
You can leave a response, or trackback from your own site.

## A final pre-exam update of my notes compilation for ‘PHY452H1S Basic Statistical Mechanics’, Taught by Prof. Arun Paramekanti « Peeter Joot's Blog. said

[…] everything detailed in the description of my previous update and […]