# Peeter Joot's (OLD) Blog.

• ## Archives peeterjoot on Curious problem using the vari… Tom on Curious problem using the vari… peeterjoot on Cartesian to spherical change… Someone on Cartesian to spherical change… peeterjoot on Cartesian to spherical change…

• 354,433

## Cartesian to spherical change of variables in 3d phase space

Posted by peeterjoot on February 11, 2013

## Question: Cartesian to spherical change of variables in 3d phase space

 problem 2.2 (a). Try a spherical change of vars to verify explicitly that phase space volume is preserved.

Our kinetic Lagrangian in spherical coordinates is \begin{aligned}\mathcal{L} &= \frac{1}{{2}} m \left( \dot{r} \hat{\mathbf{r}} + r \sin\theta \dot{\phi} \hat{\boldsymbol{\phi}} + r \dot{\theta} \hat{\boldsymbol{\theta}} \right)^2 \\ &= \frac{1}{{2}} m \left( \dot{r}^2 + r^2 \sin^2\theta \dot{\phi}^2 + r^2 \dot{\theta}^2 \right)\end{aligned} \hspace{\stretch{1}}(1.0.1)

We read off our canonical momentum \begin{aligned}p_r &= \frac{\partial {\mathcal{L}}}{\partial {r}} \\ &= m \dot{r}\end{aligned} \hspace{\stretch{1}}(1.0.2a) \begin{aligned}p_\theta &= \frac{\partial {\mathcal{L}}}{\partial {\theta}} \\ &= m r^2 \dot{\theta}\end{aligned} \hspace{\stretch{1}}(1.0.2b) \begin{aligned}p_\phi &= \frac{\partial {\mathcal{L}}}{\partial {\phi}} \\ &= m r^2 \sin^2\theta \dot{\phi},\end{aligned} \hspace{\stretch{1}}(1.0.2c)

and can now express the Hamiltonian in spherical coordinates \begin{aligned}H &= \frac{1}{{2}} m \left(\left( \frac{p_r}{m} \right)^2+ r^2 \sin^2\theta \left( \frac{p_\phi}{m r^2 \sin^2\theta} \right)+ r^2 \left( \frac{p_\theta}{m r^2} \right)\right) \\ &= \frac{p_r^2}{2m} + \frac{p_\phi^2}{2 m r^2 \sin^2\theta} + \frac{p_\theta^2}{2 m r^2}\end{aligned} \hspace{\stretch{1}}(1.0.3)

Now we want to do a change of variables. The coordinates transform as \begin{aligned}x = r \sin\theta \cos\phi\end{aligned} \hspace{\stretch{1}}(1.0.4a) \begin{aligned}y = r \sin\theta \sin\phi\end{aligned} \hspace{\stretch{1}}(1.0.4b) \begin{aligned}z = r \cos\theta,\end{aligned} \hspace{\stretch{1}}(1.0.4c)

or \begin{aligned}r = \sqrt{x^2 + y^2 + z^2}\end{aligned} \hspace{\stretch{1}}(1.0.5a) \begin{aligned}\theta = \arccos(z/r)\end{aligned} \hspace{\stretch{1}}(1.0.5b) \begin{aligned}\phi = \arctan(y/x).\end{aligned} \hspace{\stretch{1}}(1.0.5c)

It’s not too hard to calculate the change of variables for the momenta (verified in sphericalPhaseSpaceChangeOfVars.nb). We have \begin{aligned}p_r = \frac{x p_x + y p_y + z p_z}{\sqrt{x^2 + y^2 + z^2}}\end{aligned} \hspace{\stretch{1}}(1.0.6a) \begin{aligned}p_\theta = \frac{(p_x x + p_y y) z - p_z (x^2 + y^2)}{\sqrt{x^2 + y^2}}\end{aligned} \hspace{\stretch{1}}(1.0.6b) \begin{aligned}p_\phi = x p_y - y p_x\end{aligned} \hspace{\stretch{1}}(1.0.6c)

Now let’s compute the volume element in spherical coordinates. This is \begin{aligned}d\omega &= dr d\theta d\phi dp_r dp_\theta dp_\phi \\ &= \frac{\partial(r, \theta, \phi, p_r, p_\theta, p_\phi)}{\partial(x, y, z, p_x, p_y, p_z)}dx dy dz dp_x dp_y dp_z \\ &= \begin{vmatrix} \frac{x}{\sqrt{x^2+y^2+z^2}} & \frac{y}{\sqrt{x^2+y^2+z^2}} & \frac{z}{\sqrt{x^2+y^2+z^2}} & 0 & 0 & 0 \\ \frac{x z}{\sqrt{x^2+y^2} \left(x^2+y^2+z^2\right)} & \frac{y z}{\sqrt{x^2+y^2} \left(x^2+y^2+z^2\right)} & -\frac{\sqrt{x^2+y^2}}{x^2+y^2+z^2} & 0 & 0 & 0 \\ -\frac{y}{x^2+y^2} & \frac{x}{x^2+y^2} & 0 & 0 & 0 & 0 \\ \frac{\left(y^2+z^2\right) p_x-x y p_y-x z p_z}{\left(x^2+y^2+z^2\right)^{3/2}} & \frac{\left(x^2+z^2\right) p_y-y \left(x p_x+z p_z\right)}{\left(x^2+y^2+z^2\right)^{3/2}} & \frac{\left(x^2+y^2\right) p_z-z \left(x p_x+y p_y\right)}{\left(x^2+y^2+z^2\right)^{3/2}} & \frac{x}{\sqrt{x^2+y^2+z^2}} & \frac{y}{\sqrt{x^2+y^2+z^2}} & \frac{z}{\sqrt{x^2+y^2+z^2}} \\ \frac{y z \left(y p_x-x p_y\right)-x \left(x^2+y^2\right) p_z}{\left(x^2+y^2\right)^{3/2}} & \frac{x z \left(x p_y-y p_x\right)-y \left(x^2+y^2\right) p_z}{\left(x^2+y^2\right)^{3/2}} & \frac{x p_x+y p_y}{\sqrt{x^2+y^2}} & \frac{x z}{\sqrt{x^2+y^2}} & \frac{y z}{\sqrt{x^2+y^2}} & -\sqrt{x^2+y^2} \\ p_y & -p_x & 0 & -y & x & 0 \\ \end{vmatrix}dx dy dz dp_x dp_y dp_z \\ &= dx dy dz dp_x dp_y dp_z\end{aligned} \hspace{\stretch{1}}(1.0.7)

This also has a unit determinant, as we found in the similar cylindrical change of phase space variables.

# References

 RK Pathria. Statistical mechanics. Butterworth Heinemann, Oxford, UK, 1996.

### 4 Responses to “Cartesian to spherical change of variables in 3d phase space”

1. ### cosmas zachossaid

The very first line of the huge Jacobian determinant eqn 1.0.7 needs differentials dp for the momenta p. It is fixed in the second line. The partials of the Lagrangian in 1.0.2 need to be w.r.t. the velocities, so dotted quantities.

• ### peeterjootsaid

Thanks Cosmas. Fixed (and will be fixed in the next version of phy452.pdf that I post).

2. ### Someonesaid

Hey there!
About second equation of 1.0.1, there’s no square in the parenthesis, because the square was already evaluated when going from first equation to second equation.
I hope I could help! :).

• ### peeterjootsaid

Thanks. fixed.