Peeter Joot's (OLD) Blog.

Math, physics, perl, and programming obscurity.

PHY452H1S Basic Statistical Mechanics. Lecture 7: Ideal gas and SHO phase space volume calculations. Taught by Prof. Arun Paramekanti

Posted by peeterjoot on February 5, 2013

[Click here for a PDF of this post with nicer formatting]

Disclaimer

Peeter’s lecture notes from class. May not be entirely coherent.

Review. Classical phase space calculation

\begin{aligned}E_{\mathrm{ideal}} = \sum_i \frac{\mathbf{p}_i^2}{2 m}\end{aligned} \hspace{\stretch{1}}(1.2.1)

From this we calculated \gamma(E), and

\begin{aligned}\frac{d\gamma(E)}{dE} = \Omega_{\mathrm{classical}}(E)\end{aligned} \hspace{\stretch{1}}(1.2.2)

Fudging with a requirement that \Delta x \Delta p \sim h, we corrected this as

\begin{aligned}\Omega_{\mathrm{quantum}}(E) = \frac{\Omega_{\mathrm{classical}}(E)}{N! h^{3N}}\end{aligned} \hspace{\stretch{1}}(1.2.3)

Now let’s do the quantum calculation.

Quantum calculation

Recall that for the solutions of the Quantum free particle in a box, as in (Fig 1), our solutions are

Fig 1: 1D Quantum free particle in a box

 

\begin{aligned}\Psi_n(x) = \sqrt{\frac{2}{L}} \sin\left( \frac{ n \pi x}{L} \right),\end{aligned} \hspace{\stretch{1}}(1.2.4)

where n = 1, 2, \cdots, and

\begin{aligned}\epsilon_n = \frac{n^2 h^2}{8 m L^2}\end{aligned} \hspace{\stretch{1}}(1.2.5)

.

In three dimensions, with n_i = 1, 2, \cdots we have

\begin{aligned}\Psi_{n_1, n_2, n_3}(x, y, z) = \left( \frac{2}{L} \right)^{3/2} \sin\left( \frac{ n_1 \pi x}{L} \right)\sin\left( \frac{ n_2 \pi x}{L} \right)\sin\left( \frac{ n_3 \pi x}{L} \right)\end{aligned} \hspace{\stretch{1}}(1.2.6)

and

\begin{aligned}\epsilon_{n_1, n_2, n_3} = \frac{h^2}{8 m L^2} \left( n_1^2 + n_2^2 + n_3^2 \right)\end{aligned} \hspace{\stretch{1}}(1.2.7)

\begin{aligned}\gamma^{3d}_{\mathrm{classical}}(E) = \underbrace{V}_{L^3}\int d^3 p \theta \left( E - \frac{\mathbf{p}^2}{2m} \right)= V \frac{4 \pi}{3} (2 m E)^{3/2}\end{aligned} \hspace{\stretch{1}}(1.2.8)

so that

\begin{aligned}\gamma^{3d}_{\mathrm{corrected}}(E) = V \frac{4 \pi}{3} \frac{(2 m E)^{3/2}}{h^3}\end{aligned} \hspace{\stretch{1}}(1.2.9)

\begin{aligned}\gamma^{3d}_{\mathrm{quantum}}(E) = \sum_{n_1, n_2, n_3} \Theta(E - \epsilon_{n_1, n_2, n_3} ).\end{aligned} \hspace{\stretch{1}}(1.2.10)

How do the multiplicities scale by energy? We’ll have expect something like (Fig 2).

Fig 2: Multiplicities for free quantum particle in a 3D box

 

Provided the energies E \gg 3h^2/(8 m L) are large enough, we can approximate the sum with

\begin{aligned}\sum_{n_1, n_2, n_3} \sim \int_0^\infty dn_1 dn_2 dn_3\end{aligned} \hspace{\stretch{1}}(1.2.11)

So

\begin{aligned}\gamma^{3d}_{\mathrm{quantum}} \left( E \gg \frac{h^2}{8 m L^2} \right) \approx\int_0^\infty dn_1 dn_2 dn_3 \Theta \left( E - \frac{h^2}{8 m L^2} \left( n_1^2 + n_2^2 + n_3^2 \right) \right)=\frac{1}{{8}}\frac{4 \pi}{3} \left( \frac{8 m L^2 E}{h^2} \right)^{3/2}=L^3\frac{4 \pi}{3} \frac{\left( 2 m E \right)^{3/2}}{h^3}\end{aligned} \hspace{\stretch{1}}(1.2.12)

Harmonic oscillator in 1D.

Our phase space is of the form (Fig 3).

Fig 3: 1D classical SHO phase space

 

Where the number of states in this classical picture are found with:

\begin{aligned}\gamma^{\mathrm{classical}}(E) = \int dx dp \theta\left( E - \left( \frac{1}{{2}} k x^2 + \frac{1}{{2m }} p^2 \right) \right).\end{aligned} \hspace{\stretch{1}}(1.2.13)

Rescale

\begin{aligned}\tilde{x} = x \sqrt{ \frac{k}{2}}\end{aligned} \hspace{\stretch{1}}(1.0.14a)

\begin{aligned}\tilde{p} = \frac{p}{\sqrt{2m}}\end{aligned} \hspace{\stretch{1}}(1.0.14b)

so that we have

\begin{aligned}\gamma^{\mathrm{classical}}(E) = \int d\tilde{x} d \tilde{p} \sqrt{\frac{2 \times 2 m}{k}} \theta\left( E - \tilde{x}^2 - \tilde{p}^2 \right)=2 \sqrt{\frac{m}{k}} \pi E= 2 \pi \sqrt{\frac{m}{k}} E.\end{aligned} \hspace{\stretch{1}}(1.0.15)

\begin{aligned}\gamma^{\mathrm{SHO}}_{\mathrm{corrected}}(E) = 2 \pi \sqrt{\frac{m}{k}} \frac{E}{h}.\end{aligned} \hspace{\stretch{1}}(1.0.16)

How about the quantum calculation?

We have for the energy

\begin{aligned}E_n^{\mathrm{SHO}} = \left( n + \frac{1}{{2}} \right) \hbar \omega\end{aligned} \hspace{\stretch{1}}(1.0.17a)

\begin{aligned}\omega = \sqrt{\frac{k}{m}}\end{aligned} \hspace{\stretch{1}}(1.0.17b)

\begin{aligned}\hbar = \frac{h}{2 \pi}\end{aligned} \hspace{\stretch{1}}(1.0.17c)

graphing the counts (Fig 4), we again have stepping as a function of energy, but no multiplicities this time

Fig 4: 1D quantum SHO states per energy level

\begin{aligned}\gamma_{\mathrm{quantum}}(E) = \sum_{n = 0}^\infty \Theta\left( E - \left( n + \frac{1}{{2}} \hbar \omega \right) \right)\end{aligned} \hspace{\stretch{1}}(1.0.18)

we make the continuous approximation for the summation again, and throwing away the zero point energy, we have

\begin{aligned}\gamma_{\mathrm{quantum}}(E \gg \hbar \omega) \approx\int_{0}^\infty dn \Theta\left( E - n \hbar \omega \right)= 2 \pi \frac{E}{h} \sqrt{\frac{m}{k}}\end{aligned} \hspace{\stretch{1}}(1.0.19)

Why N!?

We have a problem with out counting here. Consider some particles in a box as in (Fig 5).

Fig 5: Three particles in a box

 

  1. particle 1 at \mathbf{x}_1
  2. particle 2 at \mathbf{x}_2
  3. particle 3 at \mathbf{x}_3

or

  1. particle 1 at \mathbf{x}_2
  2. particle 2 at \mathbf{x}_3
  3. particle 3 at \mathbf{x}_1

This is fine in the classical picture, but in the quantum picture with an assumption of indistinguishability, no two particles (say electrons) cannot be labelled in this fashion.

\paragraphAndIndex{Gibbs paradox}

\begin{aligned}\underbrace{S_{\mathrm{ideal}}^{(\mathrm{E}, \mathrm{N}, \mathrm{V})}}_{\text{Statistical entropy}}= k_{\mathrm{B}} \ln \left( \frac{\Omega_{\mathrm{classical}}}{h^{3N}} \right)\underbrace{\approx}_{N \gg 1} k_{\mathrm{B}} \left( N \ln V + \frac{3 N}{2} \ln \left( \frac{4 \pi m E }{3 N h^2} \right) + \frac{3 N}{2} \right)\end{aligned} \hspace{\stretch{1}}(1.0.20)

Suppose we double the volume as in (Fig 6), then our total entropy for the bigger system would be

Fig 6: Gibbs volume doubling argument. Two identical systems allowed to mix

 

\begin{aligned}S_{\mathrm{total}}^{(\mathrm{E}, \mathrm{N}, \mathrm{V})}= k_{\mathrm{B}} \ln \left( \frac{\Omega_{\mathrm{classical}}}{h^{3N}} \right)\approx k_{\mathrm{B}} \left( (2 N) \ln (2 V) + \frac{3 (2 N)}{2} \ln \left( \frac{4 \pi m (2 E) }{2 ( 2 N) h^2} \right) + \frac{3 (2 N)}{2} \right).\end{aligned} \hspace{\stretch{1}}(1.0.21)

We have

\begin{aligned}S_{\mathrm{total}} = S_1 + S_2 + k_{\mathrm{B}} (2 N) \ln 2= S_1 + S_2 + k_{\mathrm{B}} \ln 2^{2 N}.\end{aligned} \hspace{\stretch{1}}(1.0.22)

This is telling us that each particle could be in either the left or the right side, but we know that this uncertainty shouldn’t be in the final answer. We must drop this k_{\mathrm{B}} term.

So, if we assume that these particles are identical, and divide \Omega by N!, then we find

\begin{aligned}S_{\mathrm{ideal}} = k_{\mathrm{B}} \left( N \ln \frac{V}{N} + \frac{3 N}{2} \ln \left( \frac{4 \pi m E }{3 N h^2} \right) + \frac{5 N}{2} \right)\end{aligned} \hspace{\stretch{1}}(1.0.23)

Advertisements

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

 
%d bloggers like this: