Peeter Joot's (OLD) Blog.

Math, physics, perl, and programming obscurity.

Complex form of Poynting relationship

Posted by peeterjoot on August 2, 2012

[Click here for a PDF of this post with nicer formatting]

This is a problem from [1], something that I’d tried back when reading [2] but in a way that involved Geometric Algebra and the covariant representation of the energy momentum tensor. Let’s try this with plain old complex vector algebra instead.

Question: Average Poynting flux for complex 2D fields (problem 2.4)

Given a complex field phasor representation of the form

\begin{aligned}\tilde{\mathbf{E}} = \mathbf{E}_0 e^{i (\mathbf{k} \cdot \mathbf{x} - \omega t)}\end{aligned} \hspace{\stretch{1}}(1.0.1)

\begin{aligned}\tilde{\mathbf{H}} = \mathbf{H}_0 e^{i (\mathbf{k} \cdot \mathbf{x} - \omega t)}.\end{aligned} \hspace{\stretch{1}}(1.0.2)

Here we allow the components of \mathbf{E}_0 and \mathbf{H}_0 to be complex. As usual our fields are defined as the real parts of the phasors

\begin{aligned}\mathbf{E} = \text{Real}( \tilde{\mathbf{E}} )\end{aligned} \hspace{\stretch{1}}(1.0.3)

\begin{aligned}\mathbf{H} = \text{Real}( \tilde{\mathbf{H}} ).\end{aligned} \hspace{\stretch{1}}(1.0.4)

Show that the average Poynting vector has the value

\begin{aligned}\left\langle{{ \mathbf{S} }}\right\rangle = \left\langle{{ \mathbf{E} \times \mathbf{H} }}\right\rangle = \frac{1}{{2}} \text{Real}( \mathbf{E}_0 \times \mathbf{H}_0^{*} ).\end{aligned} \hspace{\stretch{1}}(1.0.5)

Answer

While the text works with two dimensional quantities in the x,y plane, I found this problem easier when tackled in three dimensions. Suppose we write the complex phasor components as

\begin{aligned}\mathbf{E}_0 = \sum_k (\mathbf{E}_{kr} + i \mathbf{E}_{ki}) \mathbf{e}_k = \sum_k {\left\lvert{\mathbf{E}_k}\right\rvert} e^{i \phi_k} \mathbf{e}_k\end{aligned} \hspace{\stretch{1}}(1.0.6)

\begin{aligned}\mathbf{H}_0 = \sum_k (\mathbf{H}_{kr} + i \mathbf{H}_{ki}) \mathbf{e}_k = \sum_k {\left\lvert{\mathbf{H}_k}\right\rvert} e^{i \psi_k} \mathbf{e}_k,\end{aligned} \hspace{\stretch{1}}(1.0.7)

and also write \phi_k' = \phi_k + \mathbf{k} \cdot \mathbf{x}, and \psi_k' = \psi_k + \mathbf{k} \cdot \mathbf{x}, then our (real) fields are

\begin{aligned}\mathbf{E} = \sum_k {\left\lvert{\mathbf{E}_k}\right\rvert} \cos(\phi_k' - \omega t) \mathbf{e}_k\end{aligned} \hspace{\stretch{1}}(1.0.8)

\begin{aligned}\mathbf{H} = \sum_k {\left\lvert{\mathbf{H}_k}\right\rvert} \cos(\psi_k' - \omega t) \mathbf{e}_k,\end{aligned} \hspace{\stretch{1}}(1.0.9)

and our Poynting vector before averaging (in these units) is

\begin{aligned}\mathbf{E} \times \mathbf{H} = \sum_{klm} {\left\lvert{\mathbf{E}_k}\right\rvert} {\left\lvert{\mathbf{H}_l}\right\rvert} \cos(\phi_k' - \omega t) \cos(\psi_l' - \omega t) \epsilon_{klm} \mathbf{e}_m.\end{aligned} \hspace{\stretch{1}}(1.0.10)

We are tasked with computing the average of cosines

\begin{aligned}\left\langle{{ \cos(a - \omega t) \cos(b - \omega t) }}\right\rangle=\frac{1}{{T}} \int_0^T \cos(a - \omega t) \cos(b - \omega t) dt=\frac{1}{{\omega T}} \int_0^T \cos(a - \omega t) \cos(b - \omega t) \omega dt=\frac{1}{{2 \pi}} \int_0^{2 \pi}\cos(a - u) \cos(b - u) du=\frac{1}{{4 \pi}} \int_0^{2 \pi}\cos(a + b - 2 u) + \cos(a - b) du=\frac{1}{{2}} \cos(a - b).\end{aligned} \hspace{\stretch{1}}(1.0.11)

So, our average Poynting vector is

\begin{aligned}\left\langle{{\mathbf{E} \times \mathbf{H}}}\right\rangle = \frac{1}{{2}} \sum_{klm} {\left\lvert{\mathbf{E}_k}\right\rvert} {\left\lvert{\mathbf{H}_l}\right\rvert} \cos(\phi_k - \psi_l) \epsilon_{klm} \mathbf{e}_m.\end{aligned} \hspace{\stretch{1}}(1.0.12)

We have only to compare this to the desired expression

\begin{aligned}\frac{1}{{2}} \text{Real}( \mathbf{E}_0 \times \mathbf{H}_0^{*} )= \frac{1}{{2}} \sum_{klm} \text{Real}\left({\left\lvert{\mathbf{E}_k}\right\rvert} e^{i\phi_k}{\left\lvert{\mathbf{H}_l}\right\rvert} e^{-i\psi_l}\right)\epsilon_{klm} \mathbf{e}_m = \frac{1}{{2}} \sum_{klm} {\left\lvert{\mathbf{E}_k}\right\rvert} {\left\lvert{\mathbf{H}_l}\right\rvert} \cos( \phi_k - \psi_l )\epsilon_{klm} \mathbf{e}_m.\end{aligned} \hspace{\stretch{1}}(1.0.13)

This proves the desired result.

References

[1] G.R. Fowles. Introduction to modern optics. Dover Pubns, 1989.

[2] JD Jackson. Classical Electrodynamics Wiley. John Wiley and Sons, 2nd edition, 1975.

Advertisements

2 Responses to “Complex form of Poynting relationship”

  1. daaxix said

    Note that this is only valid for a single plane wave, if the field consists of more than a single plane wave there will be cross terms which are not accounted for in your derivation…

    • peeterjoot said

      It looks to me that this allows for elliptical or circular polarization too, which are superposition states (1.0.6/7 1.0.7/8 allows for that I think). Do you mean that this only works for waves of the same frequency? If so, I’d agree.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

 
%d bloggers like this: