# Peeter Joot's (OLD) Blog.

• ## Archives peeterjoot on Curious problem using the vari… Tom on Curious problem using the vari… peeterjoot on Cartesian to spherical change… Someone on Cartesian to spherical change… peeterjoot on Cartesian to spherical change…

• 360,182

# Archive for July, 2012

## Another worked Landau pendulum problem

Posted by peeterjoot on July 14, 2012

## Question: Pendulum with support moving in line

This problem like the last, but with the point of suspension moving in a horizontal line $x = a \cos\gamma t$.

Our mass point has coordinates \begin{aligned}p &= a \cos\gamma t + l i e^{-i\phi} \\ &= a \cos \gamma t + l i ( \cos \phi - i \sin \phi ) \\ &= ( a \cos \gamma t + l \sin \phi, l \cos \phi ),\end{aligned} \hspace{\stretch{1}}(1.10)

so that the velocity is \begin{aligned}\dot{p} = ( -a \gamma \sin \gamma t + l \dot{\phi} \cos \phi, -l \dot{\phi} \sin \phi ).\end{aligned} \hspace{\stretch{1}}(1.11)

Our squared velocity is \begin{aligned}\dot{p}^2 &= a^2 \gamma^2 \sin^2 \gamma t + l^2 \dot{\phi}^2 - 2 a \gamma l \dot{\phi} \sin\gamma t \cos \phi \\ &= \frac{1}{{2}} a^2 \gamma^2 \frac{d{{}}}{dt}\left( t - \frac{1}{{2 \gamma}} \sin 2 \gamma t \right) + l^2 \dot{\phi}^2 - a \gamma l \dot{\phi} ( \sin( \gamma t + \phi) + \sin(\gamma t - \phi)).\end{aligned} \hspace{\stretch{1}}(1.12)

In the last term, we can reduce the sum of sines, finding a total derivative term and a remainder as in the previous problem. That is \begin{aligned}\dot{\phi} (\sin( \gamma t + \phi) + \sin(\gamma t - \phi)) &= (\dot{\phi} + \gamma)\sin(\gamma t + \phi) - \gamma \sin(\gamma t + \phi)+(\dot{\phi} - \gamma)\sin(\gamma t - \phi) + \gamma \sin(\gamma t - \phi) \\ &= \frac{d{{}}}{dt} \left( -\cos(\gamma t + \phi) + \cos(\gamma t - \phi) \right)+ \gamma ( \sin(\gamma t - \phi) - \sin(\gamma t + \phi) ) \\ &= \frac{d{{}}}{dt} \left( -\cos(\gamma t + \phi) + \cos(\gamma t - \phi) \right)- 2 \gamma \cos \gamma t \sin\phi.\end{aligned} \hspace{\stretch{1}}(1.13)

Putting all the pieces together and dropping the total derivatives we have the stated solution \begin{aligned}\mathcal{L} = \frac{1}{{2}} m \left( l^2 \dot{\phi}^2 + 2 a \gamma^2 l \cos \gamma t \sin\phi \right) + m g l \cos\phi\end{aligned} \hspace{\stretch{1}}(1.14)

# References

 LD Landau and EM Lifshitz. Mechanics, vol. 1. 1976.

## Typo in Landau Mechanics problem? Nope.

Posted by peeterjoot on July 14, 2012

# Motivation

Attempting a mechanics problem from Landau I get a different answer. I wrote up my solution to see if I can spot either where I went wrong, or demonstrate the error, and then posted it to physicsforums. I wasn’t wrong, but the text wasn’t either. Here’s the complete result.

# Guts

## Question: Pendulum with support moving in circle

section 1 problem 3a of  is to calculate the Lagrangian of a
pendulum where the point of support is moving in a circle (figure and full text for problem in this google books reference)

The coordinates of the mass are \begin{aligned}p = a e^{i \gamma t} + i l e^{i\phi},\end{aligned} \hspace{\stretch{1}}(1.1)

or in coordinates \begin{aligned}p = (a \cos\gamma t + l \sin\phi, -a \sin\gamma t + l \cos\phi).\end{aligned} \hspace{\stretch{1}}(1.2)

The velocity is \begin{aligned}\dot{p} = (-a \gamma \sin\gamma t + l \dot{\phi} \cos\phi, -a \gamma \cos\gamma t - l \dot{\phi} \sin\phi),\end{aligned} \hspace{\stretch{1}}(1.3)

and in the square \begin{aligned}\dot{p}^2 = a^2 \gamma^2 + l^2 \dot{\phi}^2 - 2 a \gamma \dot{\phi} \sin\gamma t \cos\phi + 2 a \gamma l \dot{\phi} \cos \gamma t \sin\phi=a^2 \gamma^2 + l^2 \dot{\phi}^2 + 2 a \gamma l \dot{\phi} \sin (\gamma t - \phi).\end{aligned} \hspace{\stretch{1}}(1.4)

For the potential our height above the minimum is \begin{aligned}h = 2a + l - a (1 -\cos\gamma t) - l \cos\phi = a ( 1 + \cos\gamma t) + l (1 - \cos\phi).\end{aligned} \hspace{\stretch{1}}(1.5)

In the potential the total derivative $\cos\gamma t$ can be dropped, as can all the constant terms, leaving \begin{aligned}U = - m g l \cos\phi, \end{aligned} \hspace{\stretch{1}}(1.6)

so by the above the Lagrangian should be (after also dropping the constant term $m a^2 \gamma^2/2$ \begin{aligned}\mathcal{L} = \frac{1}{{2}} m \left( l^2 \dot{\phi}^2 + 2 a \gamma l \dot{\phi} \sin (\gamma t - \phi) \right) + m g l \cos\phi.\end{aligned} \hspace{\stretch{1}}(1.7)

This is almost the stated value in the text \begin{aligned}\mathcal{L} = \frac{1}{{2}} m \left( l^2 \dot{\phi}^2 + 2 a \gamma^2 l \sin (\gamma t - \phi) \right) + m g l \cos\phi.\end{aligned} \hspace{\stretch{1}}(1.8)

We have what appears to be an innocent looking typo (text putting in a $\gamma$ instead of a $\dot{\phi}$), but the subsequent text also didn’t make sense. That referred to the omission of the total derivative $m l a \gamma \cos( \phi - \gamma t)$, which isn’t even a term that I have in my result.

In the physicsforum response it was cleverly pointed out by Dickfore that 1.7 can be recast into a total derivative \begin{aligned}m a l \gamma \dot{\phi} \sin (\gamma t - \phi) =m a l \gamma ( \dot{\phi} - \gamma ) \sin (\gamma t - \phi) +m a l \gamma^2 \sin (\gamma t - \phi) =\frac{d{{}}}{dt}\left(m a l \gamma \cos (\gamma t - \phi) \right)+m a l \gamma^2 \sin (\gamma t - \phi),\end{aligned} \hspace{\stretch{1}}(1.9)

which resolves the connundrum!

# References

 LD Landau and EM Lifshitz. Mechanics, vol. 1. 1976.

Posted in Math and Physics Learning. | Tagged: , , | 2 Comments »

## Updated notes compilations for phy356 and phy456 (QM I & II)

Posted by peeterjoot on July 1, 2012

Here’s two updates of class notes compilations for Quantum Mechanics

The QM I notes updates are strictly cosmetic (the book template is updated to that of classicthesis since it was originally posted). The chapters in QM II are reorganized a bit, grouping things by topic instead by lecture dates.