# Peeter Joot's (OLD) Blog.

• ## Archives

 Adam C Scott on avoiding gdb signal noise… Ken on Scotiabank iTrade RESP …… Alan Ball on Oops. Fixing a drill hole in P… Peeter Joot's B… on Stokes theorem in Geometric… Exploring Stokes The… on Stokes theorem in Geometric…

• 320,511

## Potential for an infinitesimal width infinite plane. Take III

Posted by peeterjoot on February 24, 2012

[Click here for a PDF of this post with nicer formatting and figures if the post had any (especially if my latex to wordpress script has left FORMULA DOES NOT PARSE errors.)]

# Document generation experiment.

The File menu save as latex produced latex that couldn’t be compiled, but mouse selected, copy-as latex worked out fairly well.

Post processing done included:

\begin{itemize}
\item Stripping out the text boxes.
\item Latex generation for math output in inline text sections was uniformly poor.
\end{itemize}

# Guts.

I’d like to attempt again to evaluate the potential for infinite plane distribution. The general form of our potential takes the form

\begin{aligned}\phi(\mathbf{x}) = G \rho \int \frac{1}{{{\left\lvert{\mathbf{x} - \mathbf{x}'}\right\rvert}}} dV'\end{aligned} \hspace{\stretch{1}}(2.1)

We want to evaluate this with cylindrical coordinates $(r', \theta', z')$, for a width $\epsilon$, and radius $r$, at distance $z$ from the plane.

\begin{aligned}\phi (z, \epsilon , r)= 2 \pi G \sigma \frac{1}{\epsilon }\int _{r' = 0}^r\int _{z' = 0}^{\epsilon }\frac{r'}{\sqrt{\left(z-z'\right)^2+\left(r'\right)^2}}dz'dr'\end{aligned} \hspace{\stretch{1}}(2.2)

With the assumption that we will take the limits $\epsilon \rightarrow 0$, and $r \rightarrow \infty$. With $r^2 = c/\epsilon$, this does not converge. How about with $r = c/\epsilon$?

Performing the r’ integration (with $r^2 = c/\epsilon$) we find

\begin{aligned}\phi (z, \epsilon )= 2 \pi G \sigma \frac{1}{\epsilon }\int_{z' = 0}^{\epsilon } \left(\sqrt{\frac{c^2}{\epsilon ^2}+(z-z')^2}-\sqrt{(z-z')^2}\right) \, dz'\end{aligned} \hspace{\stretch{1}}(2.3)

Attempting to let \textit{Mathematica} evaluate this takes a long time. Long enough that I aborted the attempt to evaluate it.

Instead, first evaluating the z’ integral we have

\begin{aligned}\phi (z, \epsilon , r)=\frac{2 \pi G \sigma }{\epsilon }\int _{r' = 0}^{c/\epsilon }\left(\log \left(\sqrt{\left(r'\right)^2+z^2}+z\right)-\log \left(\sqrt{\left(r'\right)^2+(z-\epsilon )^2}+z-\epsilon \right)\right)dr'\end{aligned} \hspace{\stretch{1}}(2.4)

This second integral can then be evaluated in reasonable time:

\begin{aligned}\begin{aligned}\phi (z, \epsilon )&= \frac{2 \pi G \sigma }{\epsilon ^2} \left(c \log \left(\frac{\sqrt{\frac{c^2}{\epsilon ^2}+z^2}+z}{\sqrt{\frac{c^2}{\epsilon ^2}+(z-\epsilon )^2}+z-\epsilon }\right)+\epsilon \left(z \log \left(\frac{(z-\epsilon ) \left(\sqrt{c^2+z^2 \epsilon ^2}+c\right)}{z}\right)+(\epsilon -z) \log \left(\sqrt{c^2+\epsilon ^2 (z-\epsilon )^2}+c\right)-\epsilon \log (\epsilon (z-\epsilon ))\right)\right) \\ &=2 \pi G \sigma \left(\frac{c}{\epsilon ^2}\log \left(\frac{\sqrt{c^2+z^2 \epsilon ^2}+z \epsilon }{\sqrt{c^2+\epsilon ^2(z-\epsilon )^2}+\epsilon (z-\epsilon )}\right)+\frac{z}{\epsilon } \log \left(\frac{(z-\epsilon ) \left(\sqrt{c^2+z^2 \epsilon ^2}+c\right)}{z\left(\sqrt{c^2+\epsilon ^2 (z-\epsilon )^2}+c\right)}\right)+ \log \left(\frac{\sqrt{c^2+\epsilon ^2 (z-\epsilon )^2}+c}{\epsilon (z-\epsilon )}\right)\right)\end{aligned}\end{aligned} \hspace{\stretch{1}}(2.5)

Does this have a limit as $\epsilon \rightarrow 0$? No, the last term is clearly divergent for $c \neq 0$.