# Peeter Joot's (OLD) Blog.

• 324,835

## Strain tensor in spherical coordinates

Posted by peeterjoot on January 23, 2012

[Click here for a PDF of this post with nicer formatting and figures if the post had any (especially if my latex to wordpress script has left FORMULA DOES NOT PARSE errors.)]

## Spherical tensor.

To perform the derivation in spherical coordinates we have some setup to do first, since we need explicit representations of all three unit vectors. The radial vector we can get easily by geometry and find the usual

\begin{aligned}\hat{\mathbf{r}} =\begin{bmatrix}\sin\theta \cos\phi \\ \sin\theta \sin\phi \\ \cos\theta\end{bmatrix}\end{aligned} \hspace{\stretch{1}}(3.61)

We can get $\hat{\boldsymbol{\phi}}$ by geometrical intuition since it the plane unit vector at angle $\phi$ rotated by $\pi/2$. That is

\begin{aligned}\hat{\boldsymbol{\phi}} =\begin{bmatrix}-\sin\phi \\ \cos\phi \\ 0\end{bmatrix}\end{aligned} \hspace{\stretch{1}}(3.62)

We can get $\hat{\boldsymbol{\theta}}$ by utilizing the right handedness of the coordinates since

\begin{aligned}\hat{\boldsymbol{\phi}} \times \hat{\mathbf{r}} = \hat{\boldsymbol{\theta}}\end{aligned} \hspace{\stretch{1}}(3.63)

and find

\begin{aligned}\hat{\boldsymbol{\theta}} =\begin{bmatrix}\cos\theta \cos\phi \\ \cos\theta \sin\phi \\ -\sin\theta\end{bmatrix}\end{aligned} \hspace{\stretch{1}}(3.64)

\begin{aligned}\begin{aligned}&d\mathbf{l}'^2 - d\mathbf{x}^2 \\ &=2 (dr)^2 \biggl(\frac{\partial u_r}{\partial r}+ \frac{1}{{2}}\frac{\partial u_m}{\partial r} \frac{\partial u_m}{\partial r}\biggr) \\ & + 2 r^2 (d\theta )^2 \biggl(\frac{1}{{r}} u_r + \frac{1}{{2r^2}}(u_r^2 + u_{\theta }^2) - \frac{1}{{r^2}} u_{\theta } \frac{\partial u_r}{\partial \theta }+ \left(\frac{1}{{r}} + \frac{1}{{r^2}}u_r\right) \frac{\partial u_{\theta }}{\partial \theta }+ \frac{1}{{2 r^2}} \frac{\partial u_m}{\partial \theta } \frac{\partial u_m}{\partial \theta }\biggr) \\ &+ 2 r^2 \sin^2\theta (d\phi )^2 \biggl( \frac{1}{{2 r^2 \sin^2\theta}} u_\phi^2+ \frac{1}{{2 r^2 }} u_{\theta }^2 \cot^2\theta+ \frac{1}{{r}} u_r+ \frac{1}{{2 r^2}} u_r^2+ \left(\frac{1}{{r}} + \frac{1}{{r^2}}u_r\right) u_{\theta } \cot\theta \\ &\qquad- \frac{1}{{r^2 \sin\theta}} u_{\phi } \frac{\partial u_r}{\partial \phi }- \frac{1}{{r^2 }} u_{\phi } \frac{\cos\theta}{\sin^2\theta} \frac{\partial u_{\theta }}{\partial \phi }+ \frac{1}{{r^2 }} \frac{\partial u_{\phi }}{\partial \phi } \left(u_{\theta } \frac{\cos\theta}{\sin^2\theta} + \left(r + u_r\right) \frac{1}{{\sin\theta}} \right)+ \frac{1}{{2 r^2 \sin^2\theta}} \frac{\partial u_m}{\partial \phi } \frac{\partial u_m}{\partial \phi }\biggr) \\ & + 2 dr r d\theta \biggl(- \frac{1}{{r}} u_{\theta }+ \frac{1}{{r}} \frac{\partial u_r}{\partial \theta }- \frac{1}{{r}} u_{\theta } \frac{\partial u_r}{\partial r}+ \frac{\partial u_{\theta }}{\partial r} \left(1 + \frac{u_r}{r} \right)+ \frac{1}{{r}} \frac{\partial u_m}{\partial r} \frac{\partial u_m}{\partial \theta }\biggr) \\ & + 2 r^2 \sin\theta d\theta d\phi \biggl(\frac{1}{{r^2 }} u_{\theta } u_{\phi }- \frac{1}{{r^2 \sin\theta}} u_{\theta } \frac{\partial u_r}{\partial \phi }- \frac{1}{{r^2 }} u_{\phi } \frac{\partial u_r}{\partial \theta }- \frac{1}{{r^2 }} u_{\phi } \cot\theta \left(r + u_r + \frac{\partial u_{\theta }}{\partial \theta }\right) \\ &\qquad+ \frac{1}{{r^2 \sin\theta}} \left(r + u_r \right) \frac{\partial u_{\theta }}{\partial \phi }+ \frac{\partial u_{\phi }}{\partial \theta } \left(\frac{u_{\theta }}{r^2} \cot\theta + \frac{1}{{r}} + \frac{u_r}{r^2} \right)+ \frac{1}{{r^2 \sin\theta}} \frac{\partial u_m}{\partial \theta } \frac{\partial u_m}{\partial \phi }\biggr) \\ & + 2 r \sin\theta d\phi dr \biggl(- \frac{1}{{r }} u_{\phi }+ \frac{1}{{r \sin\theta}} \frac{\partial u_r}{\partial \phi }- u_{\phi } \frac{1}{{r }} \frac{\partial u_r}{\partial r}- u_{\phi } \cot\theta \frac{1}{{r }} \frac{\partial u_{\theta }}{\partial r}+ \frac{1}{{r }} \frac{\partial u_{\phi }}{\partial r} \left( u_{\theta } \cot\theta + r + u_r \right)+ \frac{1}{{r \sin\theta}} \frac{\partial u_m}{\partial \phi } \frac{\partial u_m}{\partial r}\biggr)\end{aligned}\end{aligned} \hspace{\stretch{1}}(3.65)

### A manual derivation.

Doing the calculation pretty much completely with Mathematica is rather unsatisfying. To set up for it let’s first compute the unit vectors from scratch. I’ll use geometric algebra to do this calculation. Consider figure (\ref{fig:qmTwoExamReflection:continuumL2fig5})

\begin{figure}[htp]
\centering
\includegraphics[totalheight=0.2\textheight]{continuumL2fig5}
\caption{Composite rotations for spherical polar unit vectors.}
\end{figure}

We have two sets of rotations, the first is a rotation about the $z$ axis by $\phi$. Writing $i = \mathbf{e}_1 \mathbf{e}_2$ for the unit bivector in the $x,y$ plane, we rotate

\begin{aligned}\mathbf{e}_1' &= \mathbf{e}_1 e^{i\phi} = \mathbf{e}_1 \cos\phi + \mathbf{e}_2 \sin\phi \\ \mathbf{e}_2' &= \mathbf{e}_2 e^{i\phi} = \mathbf{e}_2 \cos\phi - \mathbf{e}_1 \sin\phi \\ \mathbf{e}_3' &= \mathbf{e}_3\end{aligned} \hspace{\stretch{1}}(3.66)

Now we rotate in the plane spanned by $\mathbf{e}_3$ and $\mathbf{e}_1'$ by $\theta$. With $j = \mathbf{e}_3 \mathbf{e}_1'$, our vectors in the plane rotate as

\begin{aligned}\mathbf{e}_1'' &= \mathbf{e}_1' e^{j\phi} = \mathbf{e}_1 e^{i\phi} e^{j\theta} \\ \mathbf{e}_3'' &= \mathbf{e}_3' e^{j\theta} = \mathbf{e}_3 e^{j\theta},\end{aligned} \hspace{\stretch{1}}(3.69)

(with $\mathbf{e}_2'' = \mathbf{e}_2$ since $\mathbf{e}_2 \cdot j = 0$).

\begin{aligned}\hat{\boldsymbol{\theta}} = \mathbf{e}_1''&= \mathbf{e}_1 e^{i\phi} e^{j\theta} \\ &= \mathbf{e}_1 e^{i\phi} (\cos\theta + \mathbf{e}_3 \mathbf{e}_1 e^{i\phi} \sin\theta) \\ &= \mathbf{e}_1 e^{i\phi} \cos\theta -\mathbf{e}_3 \sin\theta \\ &= (\mathbf{e}_1 \cos\phi + \mathbf{e}_2 \sin\phi) \cos\theta -\mathbf{e}_3 \sin\theta \\ \end{aligned}

\begin{aligned}\hat{\mathbf{r}} = \mathbf{e}_3''&= \mathbf{e}_3 e^{j\theta} \\ &= \mathbf{e}_3 (\cos\theta + \mathbf{e}_3 \mathbf{e}_1 e^{i\phi} \sin\theta) \\ &= \mathbf{e}_3 \cos\theta + \mathbf{e}_1 e^{i\phi} \sin\theta \\ &= \mathbf{e}_3 \cos\theta + (\mathbf{e}_1 \cos\phi + \mathbf{e}_2 \sin\phi) \sin\theta \\ \end{aligned}

Now, these are all the same relations that we could find with coordinate algebra

\begin{aligned}\hat{\mathbf{r}} &= \mathbf{e}_1 \cos\phi \sin\theta +\mathbf{e}_2 \sin\phi \sin\theta +\mathbf{e}_3 \cos\theta \\ \hat{\boldsymbol{\theta}} &= \mathbf{e}_1 \cos\phi \cos\theta +\mathbf{e}_2 \sin\phi \cos\theta -\mathbf{e}_3 \sin\theta \\ \hat{\boldsymbol{\phi}} &= -\mathbf{e}_1 \sin\phi + \mathbf{e}_2 \cos\phi\end{aligned} \hspace{\stretch{1}}(3.71)

There’s nothing special in this approach if that is as far as we go, but we can put things in a nice tidy form for computation of the differentials of the unit vectors. Introducing the unit pseudoscalar $I = \mathbf{e}_1 \mathbf{e}_2 \mathbf{e}_3$ we can write these in a compact exponential form.

\begin{aligned}\hat{\mathbf{r}}&= (\mathbf{e}_1 \cos\phi +\mathbf{e}_2 \sin\phi ) \sin\theta +\mathbf{e}_3 \cos\theta \\ &= \mathbf{e}_1 e^{i\phi} \sin\theta +\mathbf{e}_3 \cos\theta \\ &= \mathbf{e}_3 ( \cos\theta + \mathbf{e}_3 \mathbf{e}_1 e^{i\phi} \sin\theta ) \\ &= \mathbf{e}_3 ( \cos\theta + \mathbf{e}_3 \mathbf{e}_1 \mathbf{e}_2 \mathbf{e}_2 e^{i\phi} \sin\theta ) \\ &= \mathbf{e}_3 ( \cos\theta + I \hat{\boldsymbol{\phi}} \sin\theta ) \\ &= \mathbf{e}_3 e^{ I \hat{\boldsymbol{\phi}} \theta }\end{aligned}

\begin{aligned}\hat{\boldsymbol{\theta}}&=\mathbf{e}_1 \cos\phi \cos\theta +\mathbf{e}_2 \sin\phi \cos\theta -\mathbf{e}_3 \sin\theta \\ &=(\mathbf{e}_1 \cos\phi +\mathbf{e}_2 \sin\phi ) \cos\theta -\mathbf{e}_3 \sin\theta \\ &=\mathbf{e}_1 e^{i\phi} \cos\theta -\mathbf{e}_3 \sin\theta \\ &=\mathbf{e}_1 e^{i\phi} ( \cos\theta - e^{-i\phi} \mathbf{e}_1 \mathbf{e}_3 \sin\theta ) \\ &=\mathbf{e}_1 e^{i\phi} ( \cos\theta - \mathbf{e}_1 \mathbf{e}_3 e^{i\phi} \sin\theta ) \\ &=\mathbf{e}_1 e^{i\phi} ( \cos\theta - \mathbf{e}_1 \mathbf{e}_3 \mathbf{e}_2 \mathbf{e}_2 e^{i\phi} \sin\theta ) \\ &=\mathbf{e}_1 e^{i\phi} ( \cos\theta + I \hat{\boldsymbol{\phi}} \sin\theta ) \\ &=\mathbf{e}_1 \mathbf{e}_2 \mathbf{e}_2 e^{i\phi} ( \cos\theta + I \hat{\boldsymbol{\phi}} \sin\theta ) \\ &=i \hat{\boldsymbol{\phi}} e^{I \hat{\boldsymbol{\phi}} \theta}.\end{aligned}

To summarize we have

\begin{aligned}\hat{\boldsymbol{\phi}} &= \mathbf{e}_2 e^{i\phi} \\ \hat{\mathbf{r}} &= \mathbf{e}_3 e^{I\hat{\boldsymbol{\phi}} \theta} \\ \hat{\boldsymbol{\theta}} &= i \hat{\boldsymbol{\phi}} e^{I\hat{\boldsymbol{\phi}} \theta}.\end{aligned} \hspace{\stretch{1}}(3.74)

Taking differentials we find first

\begin{aligned}d\hat{\boldsymbol{\phi}} = \mathbf{e}_2 e^{i\phi} i d\phi = \hat{\boldsymbol{\phi}} i d\phi\end{aligned}

\begin{aligned}d\hat{\boldsymbol{\theta}}&= d \left( i \hat{\boldsymbol{\phi}} e^{I\hat{\boldsymbol{\phi}} \theta} \right) \\ &= i d \hat{\boldsymbol{\phi}} e^{I\hat{\boldsymbol{\phi}} \theta} + i \hat{\boldsymbol{\phi}} d \left( \cos\theta + I \hat{\boldsymbol{\phi}} \sin\theta \right) \\ &= i d \hat{\boldsymbol{\phi}} e^{I\hat{\boldsymbol{\phi}} \theta}+ i \hat{\boldsymbol{\phi}} I (d \hat{\boldsymbol{\phi}}) \sin\theta+ i \hat{\boldsymbol{\phi}} I \hat{\boldsymbol{\phi}} e^{I\hat{\boldsymbol{\phi}} \theta} d\theta \\ &= i \hat{\boldsymbol{\phi}} i e^{I\hat{\boldsymbol{\phi}} \theta} d\phi+ i \hat{\boldsymbol{\phi}} I \hat{\boldsymbol{\phi}} i \sin\theta d\phi+ i \hat{\boldsymbol{\phi}} I \hat{\boldsymbol{\phi}} e^{I\hat{\boldsymbol{\phi}} \theta} d\theta \\ &= \hat{\boldsymbol{\phi}} e^{I\hat{\boldsymbol{\phi}} \theta} d\phi- I \sin\theta d\phi- \mathbf{e}_3 e^{I\hat{\boldsymbol{\phi}} \theta} d\theta \\ &= \hat{\boldsymbol{\phi}} (\cos\theta + I \hat{\boldsymbol{\phi}} \sin\theta) d\phi- I \sin\theta d\phi- \mathbf{e}_3 e^{I\hat{\boldsymbol{\phi}} \theta} d\theta \\ &= \hat{\boldsymbol{\phi}} \cos\theta d\phi - \hat{\mathbf{r}} d\theta\end{aligned}

\begin{aligned}d \hat{\mathbf{r}}&=\mathbf{e}_3 d \left( e^{I\hat{\boldsymbol{\phi}} \theta} \right) \\ &=\mathbf{e}_3 d \left( \cos\theta + I \hat{\boldsymbol{\phi}} \sin\theta \right) \\ &=\mathbf{e}_3 \left( I (d \hat{\boldsymbol{\phi}}) \sin\theta + I \hat{\boldsymbol{\phi}} e^{I\hat{\boldsymbol{\phi}} \theta} d\theta \right) \\ &=\mathbf{e}_3 \left( I \hat{\boldsymbol{\phi}} i \sin\theta d\phi + I \hat{\boldsymbol{\phi}} e^{I\hat{\boldsymbol{\phi}} \theta} d\theta \right) \\ &=i \hat{\boldsymbol{\phi}} i \sin\theta d\phi + i \hat{\boldsymbol{\phi}} e^{I\hat{\boldsymbol{\phi}} \theta} d\theta \\ &=\hat{\boldsymbol{\phi}} \sin\theta d\phi + \hat{\boldsymbol{\theta}} d\theta\end{aligned}

Summarizing these differentials we have

\begin{aligned}d\hat{\mathbf{r}} &= \hat{\boldsymbol{\phi}} \sin\theta d\phi + \hat{\boldsymbol{\theta}} d\theta \\ d\hat{\boldsymbol{\theta}} &= \hat{\boldsymbol{\phi}} \cos\theta d\phi - \hat{\mathbf{r}} d\theta \\ d\hat{\boldsymbol{\phi}} &= \hat{\boldsymbol{\phi}} i d\phi\end{aligned} \hspace{\stretch{1}}(3.77)

A final cleanup is required. While $\hat{\boldsymbol{\phi}} i$ is a vector and has a nicely compact form, we need to decompose this into components in the $\hat{\mathbf{r}}$, $\hat{\boldsymbol{\theta}}$ and $\hat{\boldsymbol{\phi}}$ directions. Taking scalar products we have

\begin{aligned}\hat{\boldsymbol{\phi}} \cdot (\hat{\boldsymbol{\phi}} i) = 0\end{aligned}

\begin{aligned}\hat{\mathbf{r}} \cdot (\hat{\boldsymbol{\phi}} i)&=\left\langle{{ \hat{\mathbf{r}} \hat{\boldsymbol{\phi}} i}}\right\rangle \\ &=\left\langle{{ \mathbf{e}_3 e^{I\hat{\boldsymbol{\phi}} \theta} \mathbf{e}_2 e^{i\phi} i}}\right\rangle \\ &=\left\langle{{ \mathbf{e}_3 (\cos\theta + I \mathbf{e}_2 e^{i\phi} \sin\theta) \mathbf{e}_2 e^{i\phi} i}}\right\rangle \\ &=\left\langle{{ I (\cos\theta e^{-i\phi} + I \mathbf{e}_2 \sin\theta) \mathbf{e}_2 }}\right\rangle \\ &=-\sin\theta\end{aligned}

\begin{aligned}\hat{\boldsymbol{\theta}} \cdot (\hat{\boldsymbol{\phi}} i)&=\left\langle{{ \hat{\boldsymbol{\theta}} \hat{\boldsymbol{\phi}} i }}\right\rangle \\ &=\left\langle{{ i \hat{\boldsymbol{\phi}} e^{I\hat{\boldsymbol{\phi}} \theta} \hat{\boldsymbol{\phi}} i }}\right\rangle \\ &=-\left\langle{{ \hat{\boldsymbol{\phi}} e^{I\hat{\boldsymbol{\phi}} \theta} \hat{\boldsymbol{\phi}} }}\right\rangle \\ &=-\left\langle{{ e^{I\hat{\boldsymbol{\phi}} \theta} }}\right\rangle \\ &=- \cos\theta.\end{aligned}

Summarizing once again, but this time in terms of $\hat{\mathbf{r}}$, $\hat{\boldsymbol{\theta}}$ and $\hat{\boldsymbol{\phi}}$ we have

\begin{aligned}d\hat{\mathbf{r}} &= \hat{\boldsymbol{\phi}} \sin\theta d\phi + \hat{\boldsymbol{\theta}} d\theta \\ d\hat{\boldsymbol{\theta}} &= \hat{\boldsymbol{\phi}} \cos\theta d\phi - \hat{\mathbf{r}} d\theta \\ d\hat{\boldsymbol{\phi}} &= -(\hat{\mathbf{r}} \sin\theta + \hat{\boldsymbol{\theta}} \cos\theta) d\phi\end{aligned} \hspace{\stretch{1}}(3.80)

Now we are set to take differentials. With

\begin{aligned}\mathbf{x} = r \hat{\mathbf{r}},\end{aligned} \hspace{\stretch{1}}(3.83)

we have

\begin{aligned}d\mathbf{x} =dr \hat{\mathbf{r}}+ r d\hat{\mathbf{r}}=dr \hat{\mathbf{r}} + \hat{\boldsymbol{\phi}} r \sin\theta d\phi + r \hat{\boldsymbol{\theta}} d\theta.\end{aligned} \hspace{\stretch{1}}(3.84)

Squaring this we get the usual spherical polar line scalar line element

\begin{aligned}d\mathbf{x}^2 = dr^2 + r^2 \sin^2\theta d\phi^2 + r^2 d\theta^2.\end{aligned} \hspace{\stretch{1}}(3.85)

With

\begin{aligned}\mathbf{u} = u_r \hat{\mathbf{r}} + u_\theta \hat{\boldsymbol{\theta}} + u_\phi \hat{\boldsymbol{\phi}},\end{aligned} \hspace{\stretch{1}}(3.86)

our differential is

\begin{aligned}d\mathbf{u}&=du_r \hat{\mathbf{r}} + du_\theta \hat{\boldsymbol{\theta}} + du_\phi \hat{\boldsymbol{\phi}}+ u_r d\hat{\mathbf{r}} + u_\theta d\hat{\boldsymbol{\theta}} + u_\phi d \hat{\boldsymbol{\phi}} \\ &=du_r \hat{\mathbf{r}} + du_\theta \hat{\boldsymbol{\theta}} + du_\phi \hat{\boldsymbol{\phi}}+ u_r \left(\hat{\boldsymbol{\phi}} \sin\theta d\phi + \hat{\boldsymbol{\theta}} d\theta \right)+ u_\theta \left( \hat{\boldsymbol{\phi}} \cos\theta d\phi - \hat{\mathbf{r}} d\theta \right)- u_\phi (\hat{\mathbf{r}} \sin\theta + \hat{\boldsymbol{\theta}} \cos\theta) d\phi\\ &=\hat{\mathbf{r}} \left( du_r - u_\theta d\theta - u_\phi \sin\theta d\phi \right) \\ &+\hat{\boldsymbol{\theta}} \left( du_\theta + u_r d\theta - u_\phi \cos\theta d\phi \right) \\ &+\hat{\boldsymbol{\phi}} \left( du_\phi + u_r \sin\theta d\phi + u_\theta \cos\theta d\phi \right).\end{aligned}

We can add $d\mathbf{x}$ to this and take differences

\begin{aligned}\begin{aligned}(d\mathbf{u} + d\mathbf{x})^2 - d\mathbf{x}^2&=\left( du_r - u_\theta d\theta - u_\phi \sin\theta d\phi + dr \right)^2 \\ &+\left( du_\theta + u_r d\theta - u_\phi \cos\theta d\phi + r d\theta \right)^2 \\ &+\left( du_\phi + u_r \sin\theta d\phi + u_\theta \cos\theta d\phi + r \sin\theta d\phi \right)^2\end{aligned}\end{aligned} \hspace{\stretch{1}}(3.87)

For each $m = r,\theta,\phi$ we have

\begin{aligned}du_m=\frac{\partial {u_m}}{\partial {r}} dr +\frac{\partial {u_m}}{\partial {\theta}} d\theta +\frac{\partial {u_m}}{\partial {\phi}} d\phi,\end{aligned} \hspace{\stretch{1}}(3.88)

and plugging through that calculation is really all it takes to derive the textbook result. To do this to first order in $u_m$, we find

\begin{aligned}\frac{1}{{2}} \left((d\mathbf{u} + d\mathbf{x})^2 - d\mathbf{x}^2\right)&=du_r dr- u_\theta d\theta dr- u_\phi \sin\theta d\phi dr \\ &+ du_\theta r d\theta+ u_r r d\theta^2- u_\phi r \cos\theta d\phi d\theta \\ &+ r \sin\theta du_\phi d\phi+ r \sin^2\theta u_r d\phi^2+ r \sin\theta \cos\theta u_\theta d\phi^2 \\ &=\left( \frac{\partial {u_r}}{\partial {r}} dr + \frac{\partial {u_r}}{\partial {\theta}} d\theta + \frac{\partial {u_r}}{\partial {\phi}} d\phi \right)dr- u_\theta d\theta dr- u_\phi \sin\theta d\phi dr \\ &+\left( \frac{\partial {u_\theta}}{\partial {r}} dr + \frac{\partial {u_\theta}}{\partial {\theta}} d\theta + \frac{\partial {u_\theta}}{\partial {\phi}} d\phi \right) r d\theta+ u_r r d\theta^2- u_\phi r \cos\theta d\phi d\theta \\ &+\left( \frac{\partial {u_\phi}}{\partial {r}} dr + \frac{\partial {u_\phi}}{\partial {\theta}} d\theta + \frac{\partial {u_\phi}}{\partial {\phi}} d\phi \right)r \sin\theta d\phi+ r \sin^2\theta u_r d\phi^2+ r \sin\theta \cos\theta u_\theta d\phi^2\end{aligned}

Collecting terms we have the result of the text in the braces

\begin{aligned}\begin{aligned}\left((d\mathbf{u} + d\mathbf{x})^2 - d\mathbf{x}^2\right)&=2 dr^2 \left(\frac{\partial {u_r}}{\partial {r}}\right) \\ &+2 r^2 d\theta^2 \left(\frac{1}{{r}} \frac{\partial {u_\theta}}{\partial {\theta}} + u_r \frac{1}{{r}}\right) \\ &+2 r^2 \sin^2\theta d\phi^2 \left(\frac{\partial {u_\phi}}{\partial {\phi}} \frac{1}{{r \sin\theta}} + \frac{1}{{r}} u_r + \frac{1}{{r}} \cot\theta u_\theta\right) \\ &+2 dr r d\theta \left(\frac{1}{{r}} \frac{\partial {u_r}}{\partial {\theta}} - \frac{1}{{r}} u_\theta +\frac{\partial {u_\theta}}{\partial {r}}\right) \\ &+2 r^2 \sin\theta d\theta d\phi \left(\frac{\partial {u_\theta}}{\partial {\phi}} \frac{1}{{r \sin\theta}} - \frac{1}{{r}} u_\phi \cot\theta +\frac{1}{{r}} \frac{\partial {u_\phi}}{\partial {\theta}}\right) \\ &+2 r \sin\theta d\phi dr \left(\frac{1}{{r \sin\theta}} \frac{\partial {u_r}}{\partial {\phi}} - \frac{1}{{r}} u_\phi + \frac{\partial {u_\phi}}{\partial {r}}\right)\end{aligned}\end{aligned} \hspace{\stretch{1}}(3.89)

It should be possible to do the calculation to second order too, but to include all the quadratic terms in $u_m$ is again really messy. Trying that with mathematica gives the same results as above using the strictly coordinate algebra approach.

# References

[1] L.D. Landau, EM Lifshitz, JB Sykes, WH Reid, and E.H. Dill. Theory of elasticity: Vol. 7 of course of theoretical physics. 1960.