# Peeter Joot's (OLD) Blog.

• ## Archives peeterjoot on Curious problem using the vari… Tom on Curious problem using the vari… peeterjoot on Cartesian to spherical change… Someone on Cartesian to spherical change… peeterjoot on Cartesian to spherical change…

• 360,183

## Harmonic Oscillator position and momentum Hamiltonian operators

Posted by peeterjoot on December 18, 2010

# Motivation.

Hamiltonian problem from Chapter 9 of .

## Problem 1.

### Statement.

Assume $x(t)$ and $p(t)$ to be Heisenberg operators with $x(0) = x_0$ and $p(0) = p_0$. For a Hamiltonian corresponding to the harmonic oscillator show that \begin{aligned}x(t) &= x_0 \cos \omega t + \frac{p_0}{m \omega} \sin \omega t \\ p(t) &= p_0 \cos \omega t - m \omega x_0 \sin \omega t.\end{aligned} \hspace{\stretch{1}}(3.1)

### Solution.

Recall that the Hamiltonian operators were defined by factoring out the time evolution from a set of states \begin{aligned}{\langle {\alpha(t) } \rvert} A {\lvert { \beta(t) } \rangle}={\langle {\alpha(0) } \rvert} e^{i H t/\hbar} A e^{-i H t/\hbar} {\lvert { \beta(0) } \rangle}.\end{aligned} \hspace{\stretch{1}}(3.3)

So one way to complete the task is to compute these exponential sandwiches. Recall from the appendix of chapter 10, that we have \begin{aligned}e^A B e^{-A}= B + \left[{A},{B}\right]+ \frac{1}{{2!}} \left[{A},{\left[{A},{B}\right]}\right] + \cdots\end{aligned} \hspace{\stretch{1}}(3.4)

Perhaps there is also some smarter way to do this, but lets first try the obvious way.

Let’s summarize the variables we will work with \begin{aligned}\alpha &= \sqrt{\frac{m \omega}{\hbar}} \\ X &= \frac{1}{{\alpha \sqrt{2}}} ( a + a^\dagger ) \\ P &= -i \hbar \frac{\alpha}{\sqrt{2}} ( a - a^\dagger ) \\ H &= \hbar \omega ( a^\dagger a + 1/2 ) \\ \left[{a},{a^\dagger}\right] &= 1 \end{aligned} \hspace{\stretch{1}}(3.5)

The operator in the exponential sandwich is \begin{aligned}A = i H t/\hbar = i \omega t ( a^\dagger a + 1/2 )\end{aligned} \hspace{\stretch{1}}(3.10)

Note that the constant $1/2$ factor will commute with all operators, which reduces the computation required \begin{aligned}\antisymmetric{i H t/\hbar} {B } = (i\omega t) \left[{a^\dagger a},{B}\right]\end{aligned} \hspace{\stretch{1}}(3.11)

For $B = X$, or $B = P$, we’ll want some intermediate results \begin{aligned}\left[{a^\dagger a},{a}\right]&=a^\dagger a a - a a^\dagger a \\ &=a^\dagger a a - (a^\dagger a + 1) a \\ &=-a,\end{aligned}

and \begin{aligned}\left[{a^\dagger a},{a^\dagger}\right]&=a^\dagger a a^\dagger - a^\dagger a^\dagger a \\ &=a^\dagger a a^\dagger - a^\dagger (a a^\dagger -1) \\ &=a^\dagger\end{aligned}

Using these we can evaluate the commutators for the position and momentum operators. For position we have \begin{aligned}\left[{i H t /\hbar },{X}\right] &= (i \omega t) \frac{1}{{\alpha \sqrt{2}}} \left[{a^\dagger a},{a+ a^\dagger}\right] \\ &= (i \omega t) \frac{1}{{\alpha \sqrt{2}}} (-a + a^\dagger ) \\ &= \frac{\omega t}{\alpha^2} \frac{-i \hbar \alpha}{ \sqrt{2}} (a - a^\dagger ).\end{aligned}

Since $\alpha^2 \hbar = m \omega$, we have \begin{aligned}\left[{i H t /\hbar },{X}\right] = (\omega t) \frac{P}{m \omega }.\end{aligned} \hspace{\stretch{1}}(3.12)

For the momentum operator we have \begin{aligned}\left[{i H t /\hbar },{P}\right] &= (i \omega t) \frac{-i \hbar \alpha}{ \sqrt{2}} \left[{a^\dagger a},{a- a^\dagger}\right] \\ &= (i \omega t) \frac{i \hbar \alpha}{ \sqrt{2}} (a + a^\dagger) \\ &= (\omega t) (\hbar \alpha^2) X\end{aligned}

So we have \begin{aligned}\left[{i H t /\hbar },{P}\right] = (-\omega t) (m \omega ) X\end{aligned} \hspace{\stretch{1}}(3.13)

The expansion of the exponential series of nested commutators can now be written down by inspection and we get \begin{aligned}X_H = X + (\omega t) \frac{P}{m \omega} - \frac{(\omega t)^2}{2!} X - \frac{(\omega t)^3}{3!} \frac{P}{m \omega} + \cdots\end{aligned} \hspace{\stretch{1}}(3.14) \begin{aligned}P_H = P - (\omega t) (m \omega)X - \frac{(\omega t)^2}{2!} P + \frac{(\omega t)^3}{3!} (m \omega)X + \cdots\end{aligned} \hspace{\stretch{1}}(3.15)

Collection of terms gives us the desired answer \begin{aligned}X_H = X \cos(\omega t) + \frac{P}{m \omega} \sin(\omega t)\end{aligned} \hspace{\stretch{1}}(3.16) \begin{aligned}P_H = P \cos(\omega t) - (m \omega) X \sin(\omega t)\end{aligned} \hspace{\stretch{1}}(3.17)

# References

 BR Desai. Quantum mechanics with basic field theory. Cambridge University Press, 2009.