# Peeter Joot's (OLD) Blog.

• ## Recent Comments peeterjoot on Curious problem using the vari… Tom on Curious problem using the vari… peeterjoot on Cartesian to spherical change… Someone on Cartesian to spherical change… peeterjoot on Cartesian to spherical change…

• 349,822

## Infinite square well wavefunction.

Posted by peeterjoot on May 31, 2010

[Click here for a PDF of this post with nicer formatting and figures if the post had any (especially if my latex to wordpress script has left FORMULA DOES NOT PARSE errors.)]

# Motivation.

Work problem 4.1 from , calculation of the eigensolution for an infinite square well, with boundaries $[-a/2, a/2]$. It’s actually a bit tidier seeming to generalize this slightly to boundaries $[a,b]$, which also implicitly solves the problem. This is surely a problem that is done in 700 other QM texts, but I liked the way I did it this time so am writing it down.

# Guts

Our equation to solve is $i \hbar \Psi_t = -(\hbar^2/2m) \Psi_{xx}$. Separation of variables $\Psi = T \phi$ gives us \begin{aligned}T &\propto e^{-i E t/\hbar } \\ \phi'' &= -\frac{2 m E }{\hbar^2} \phi\end{aligned} \hspace{\stretch{1}}(2.1)

With $k^2 = 2 m E/\hbar^2$, we have \begin{aligned}\phi = A e^{i k x } + B e^{-i k x},\end{aligned} \hspace{\stretch{1}}(2.3)

and the usual $\phi(a) = \phi(b) = 0$ boundary conditions give us \begin{aligned}0 = \begin{bmatrix}e^{i k a } & e^{-i k a} \\ e^{i k b } & e^{-i k b}\end{bmatrix}\begin{bmatrix}A \\ B\end{bmatrix}.\end{aligned} \hspace{\stretch{1}}(2.4)

We must have a zero determinant, which gives us the constraints on $k$ immediately \begin{aligned}0 &= e^{i k (a - b)} - e^{i k (b-a)} \\ &= 2 i \sin( k (a - b) ).\end{aligned}

So our constraint on $k$ in terms of integers $n$, and the corresponding integration constant $E$ \begin{aligned}k &= \frac{n \pi}{b - a} \\ E &= \frac{\hbar^2 n^2 \pi^2 }{2 m (b-a)^2}.\end{aligned} \hspace{\stretch{1}}(2.5)

One of the constants $A,B$ can be eliminated directly by picking any one of the two zeros from 2.4 \begin{aligned}&A e ^{i k a } + B e^{-i k a} = 0 \\ &\implies \\ &B = -A e ^{2 i k a } \end{aligned}

So we have \begin{aligned}\phi = A \left( e^{i k x } - e^{ ik (2a - x) } \right).\end{aligned} \hspace{\stretch{1}}(2.7)

Or, \begin{aligned}\phi = 2 A i e^{i k a} \sin( k (x-a )) \end{aligned} \hspace{\stretch{1}}(2.8)

Because probability densities, currents and the expectations of any operators will always have paired $\phi$ and $\phi^{*}$ factors, any constant phase factors like $i e^{i k a}$ above can be dropped, or absorbed into the constant $A$, and we can write \begin{aligned}\phi = 2 A \sin( k (x-a )) \end{aligned} \hspace{\stretch{1}}(2.9)

The only thing left is to fix $A$ by integrating ${\left\lvert{\phi}\right\rvert}^2$, for which we have \begin{aligned}1 &= \int_a^b \phi \phi^{*} dx \\ &= A^2 \int_a^b dx \left( e^{i k x } - e^{ ik (2a - x) } \right) \left( e^{-i k x } - e^{ -ik (2a - x) } \right) \\ &= A^2 \int_a^b dx \left( 2 - e^{ik(2a - 2x)} - e^{ik(-2a + 2x)} \right) \\ &= 2 A^2 \int_a^b dx \left( 1 - \cos (2 k (a - x)) \right)\end{aligned}

This last trig term vanishes over the integration region and we are left with \begin{aligned}A = \frac{1}{{ \sqrt{2 (b-a)}}},\end{aligned} \hspace{\stretch{1}}(2.10)

which essentially completes the problem. A final substitution back into 2.8 allows for a final tidy up \begin{aligned}\phi = \sqrt{\frac{2}{b-a}} \sin( k (x-a )).\end{aligned} \hspace{\stretch{1}}(2.11)

# References

 R. Liboff. Introductory quantum mechanics. Cambridge: Addison-Wesley Press, Inc, 2003.